

CS 498PS – Audio Computing Lab

Audio Mixtures and Spectral Factorizations

Paris Smaragdis paris@illinois.edu paris.cs.illinois.edu

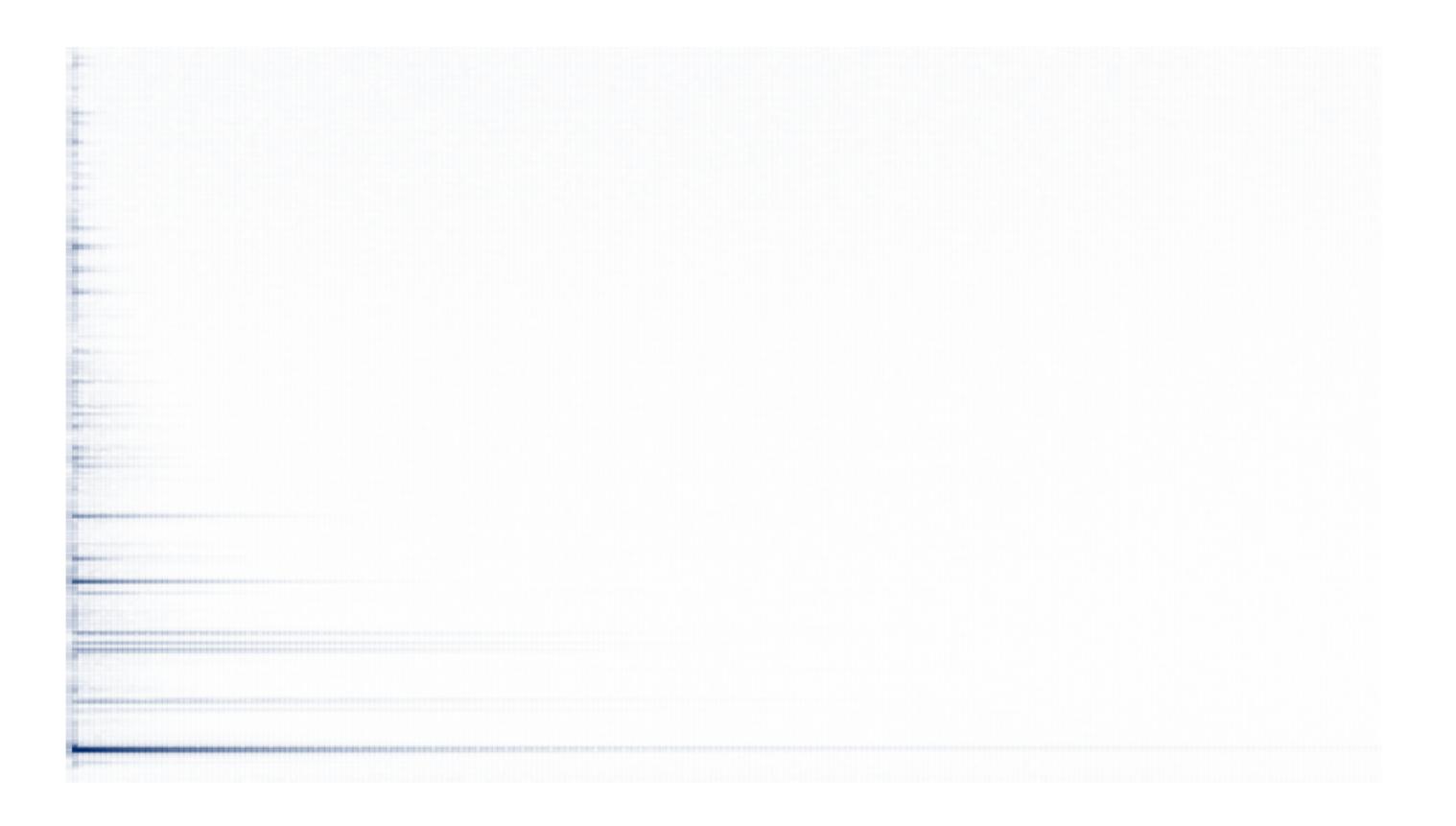
Overview

Factorizing spectra

- Audio mixture problems
 - Scene analysis
 - Source separation
 - Denoising
 - Multisource manipulation
 - • •

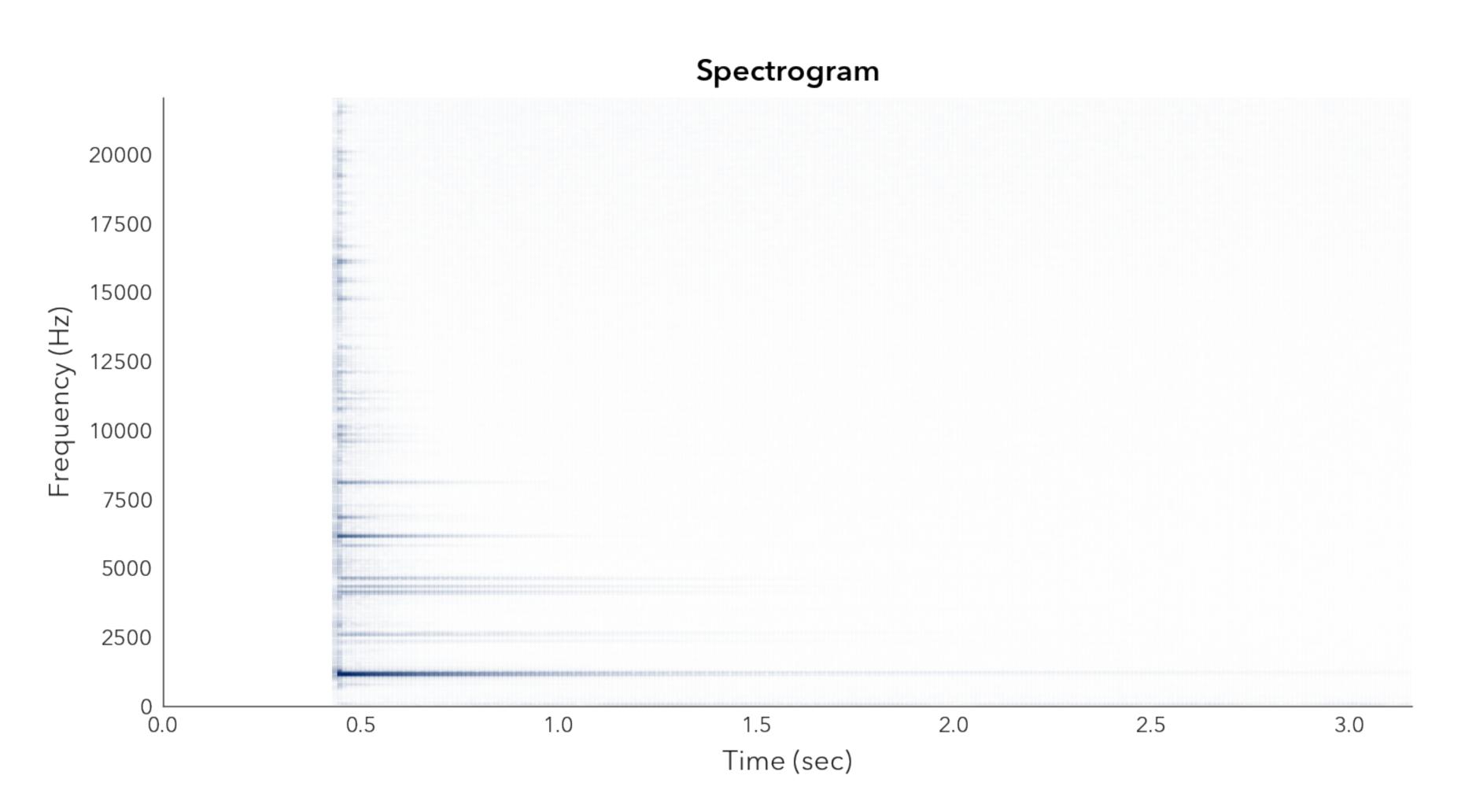
Astarter

• What is this?



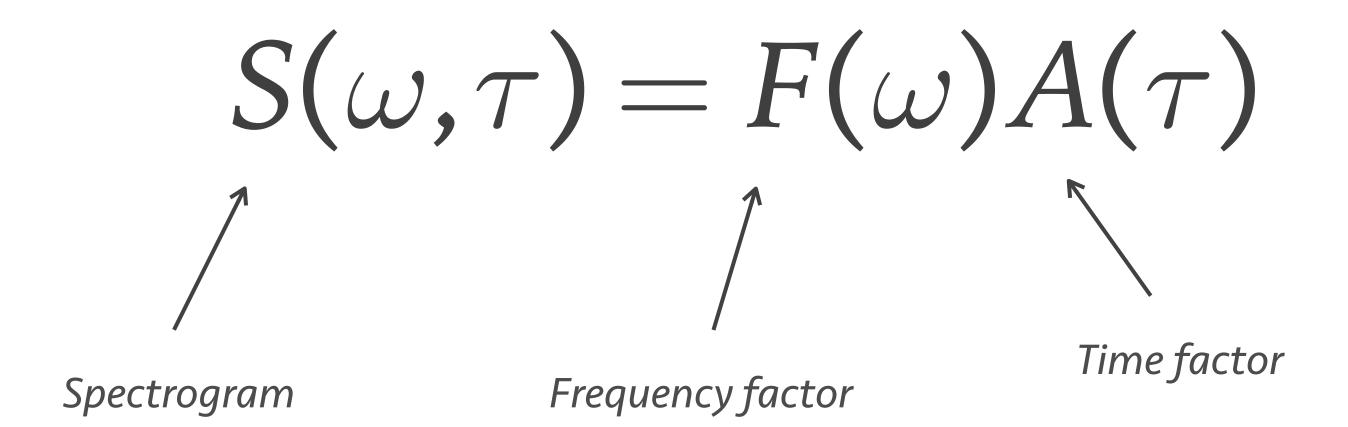
A magnitude spectrogram

Representing energy over time & frequency



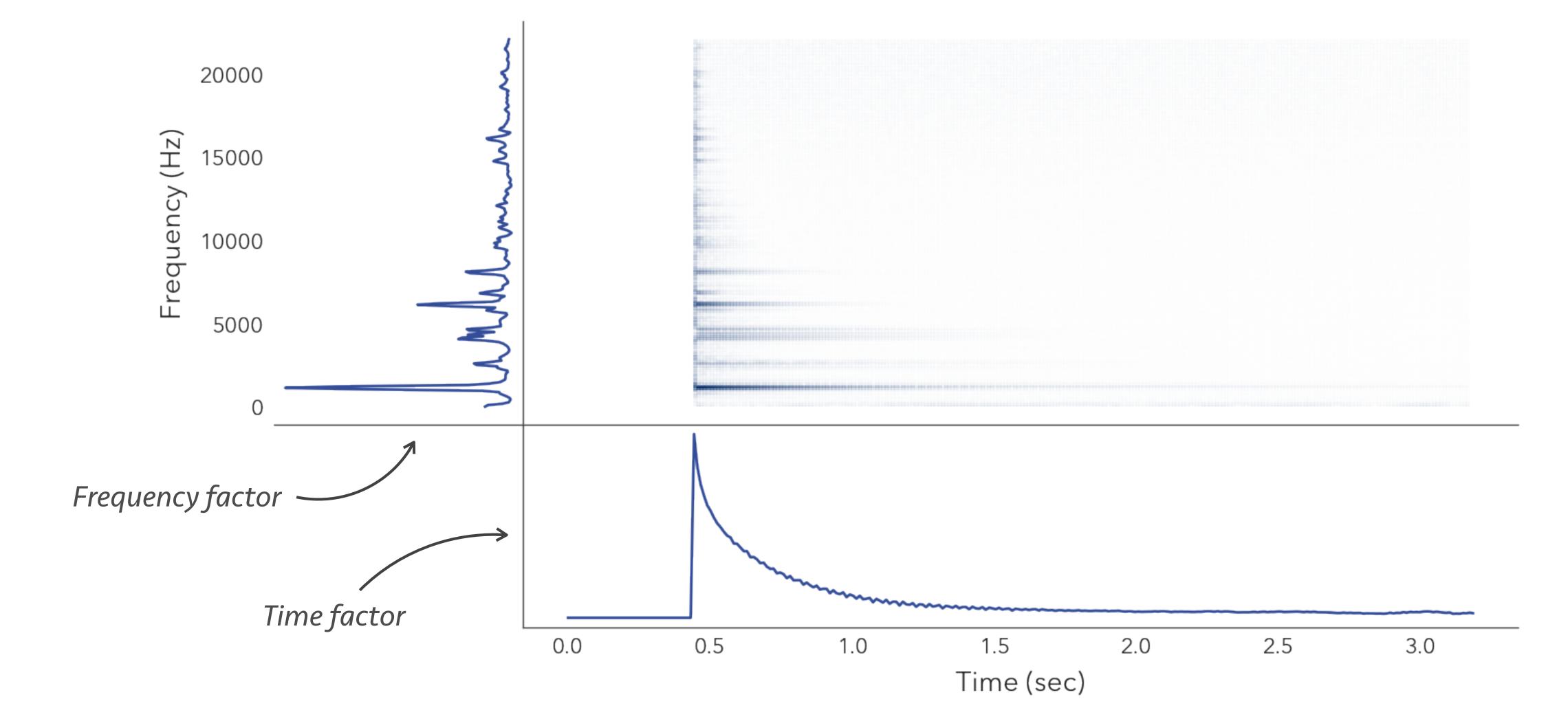
Factorizing a spectrogram

- We can approximate the 2D magnitude spectrogram as a product of two 1D functions
 - A frequency factor and a time factor



Estimating the factors

We average over each dimension



Nothing new here

- Frequency factor == Signal spectrum
 - Energy distribution over frequency

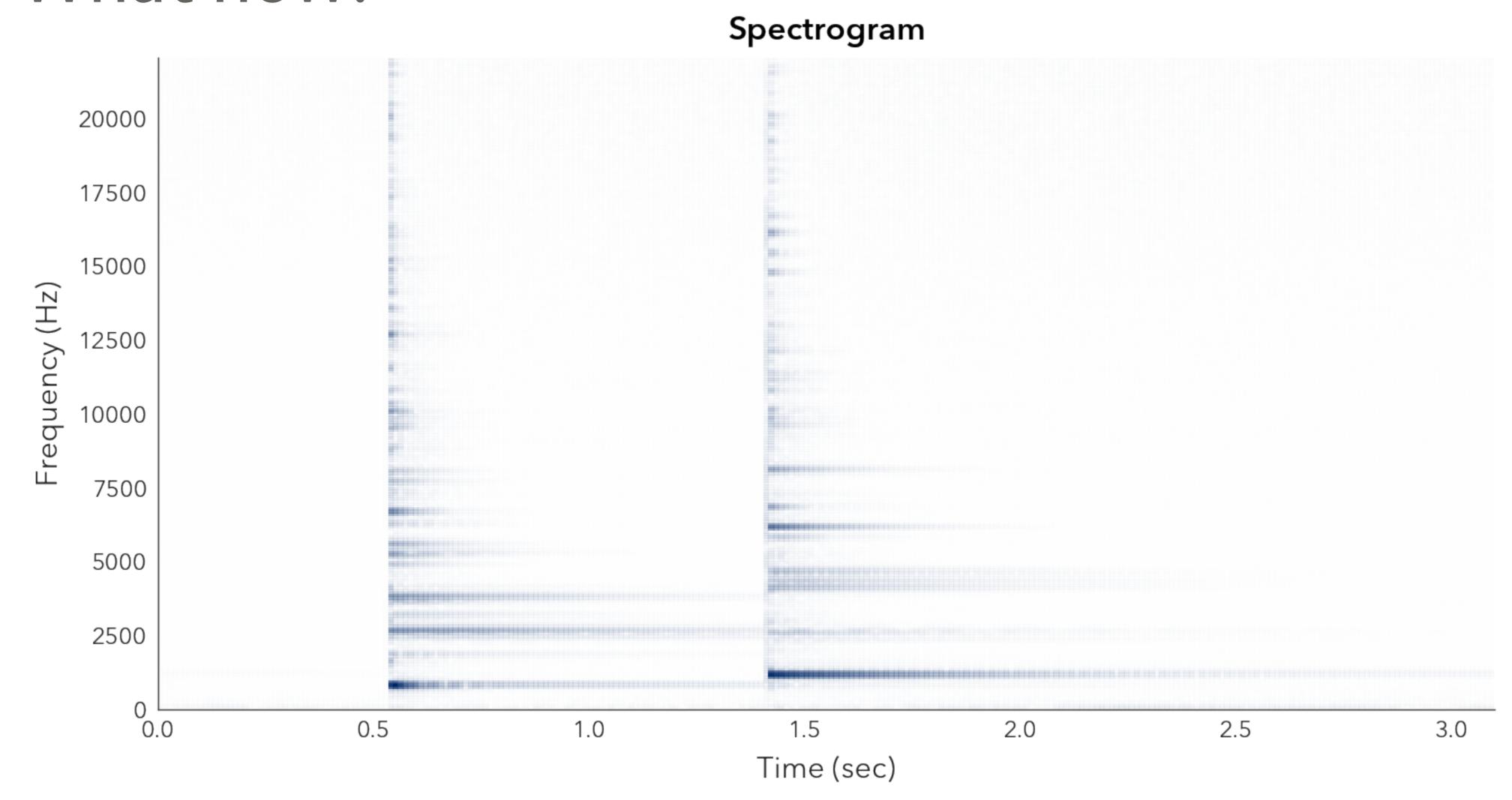
$$F(\omega) = \sum_{\tau} S(\omega, \tau)$$

- Time factor == Signal envelope
 - Energy distribution over time

$$A(\tau) = \sum_{\omega} S(\omega, \tau)$$

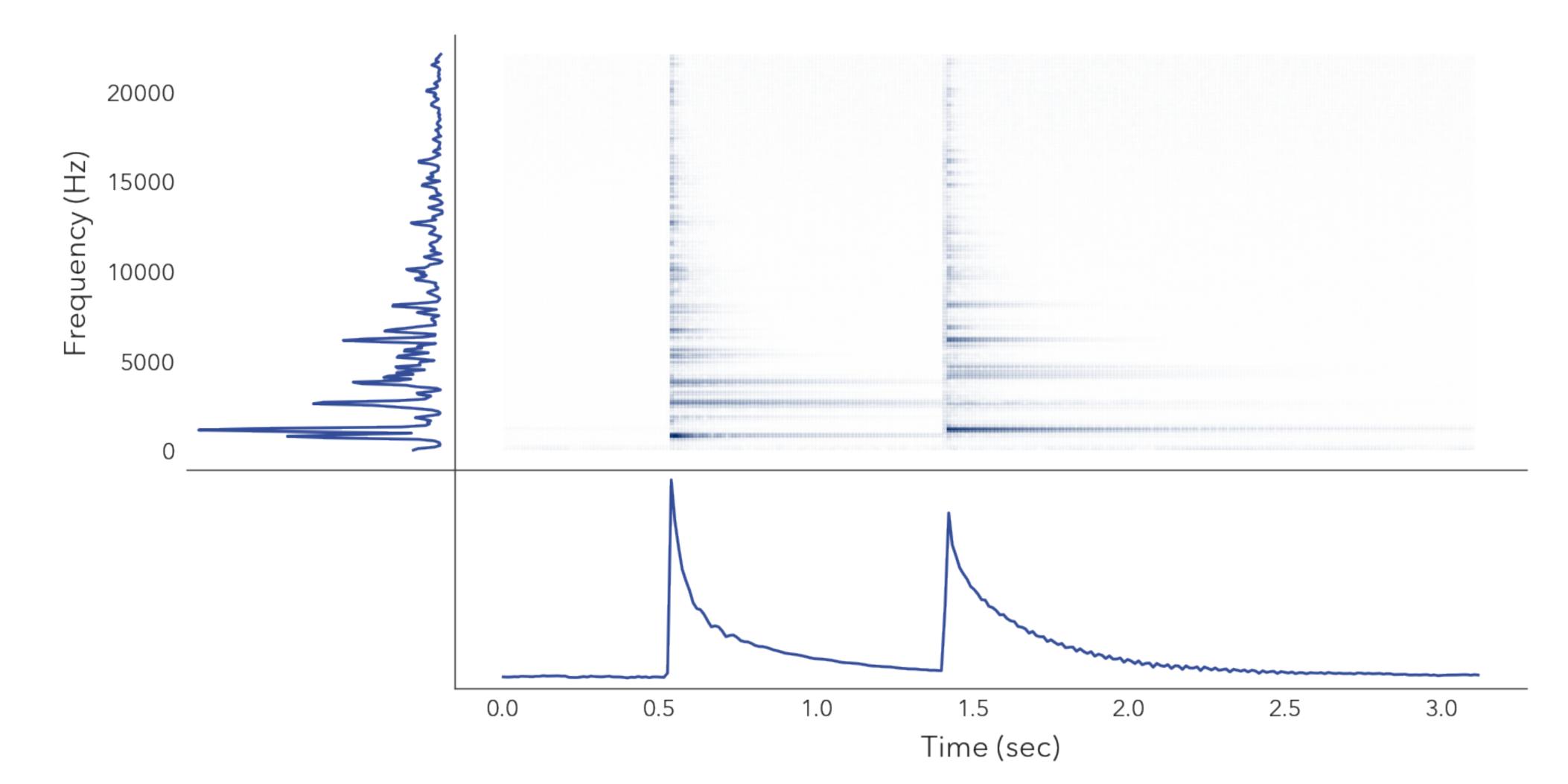
Another example

• What now?



Doesn't factorize in a useful way

The learned factors are "mixed"



What if?

- Could we get two sets of factors?
 - One for each element in the input
- Initial factor model:

$$S(\omega, \tau) = F(\omega)A(\tau)$$

A "multiple factors" model:

$$S(\omega,\tau) = F_1(\omega)A_1(\tau) + F_2(\omega)A_2(\tau)$$

Learning this model

- Simple 2-stage process:
 - See how much each "pixel" is explained by each factor set

$$\gamma_i(\omega,\tau) = \frac{F_i(\omega)A_i(\tau)}{F_1(\omega)A_1(\tau) + F_2(\omega)A_2(\tau)}$$

Re-estimate factors using that weight

$$F_i(\omega) = \sum_{\tau} \gamma_i(\omega, \tau) S(\omega, \tau)$$
 $A_i(\omega) = \sum_{\tau} \gamma_i(\omega, \tau) S(\omega, \tau)$

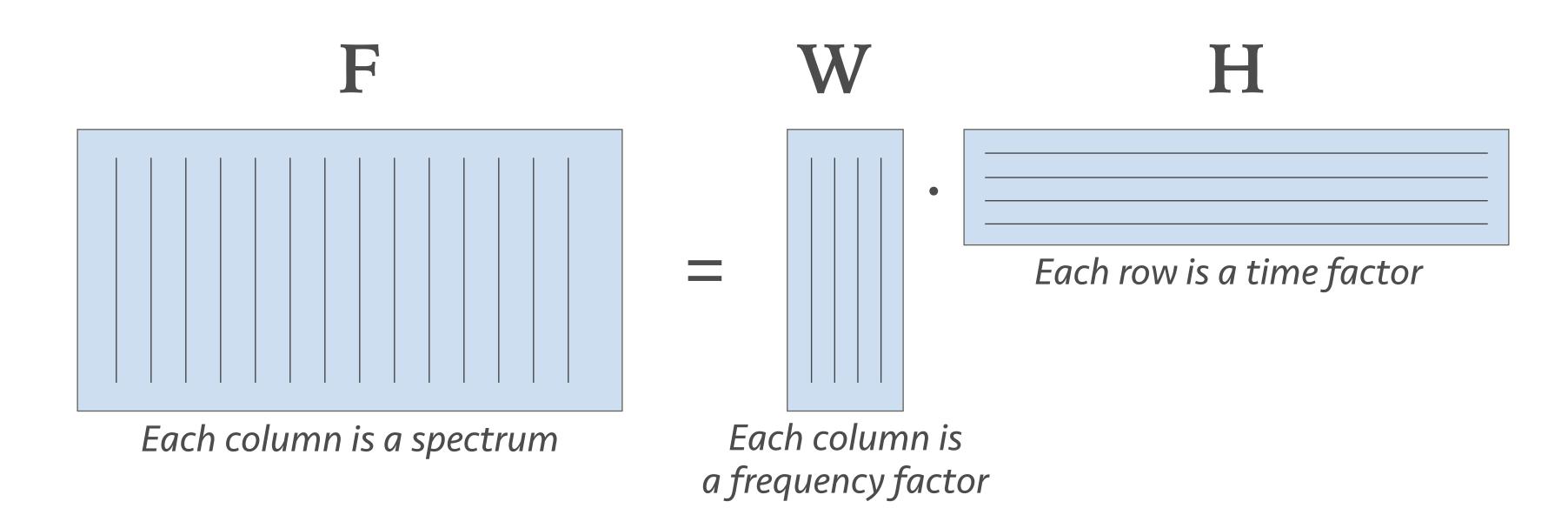
• Repeat ...

General algorithm

Non-Negative Matrix Factorization

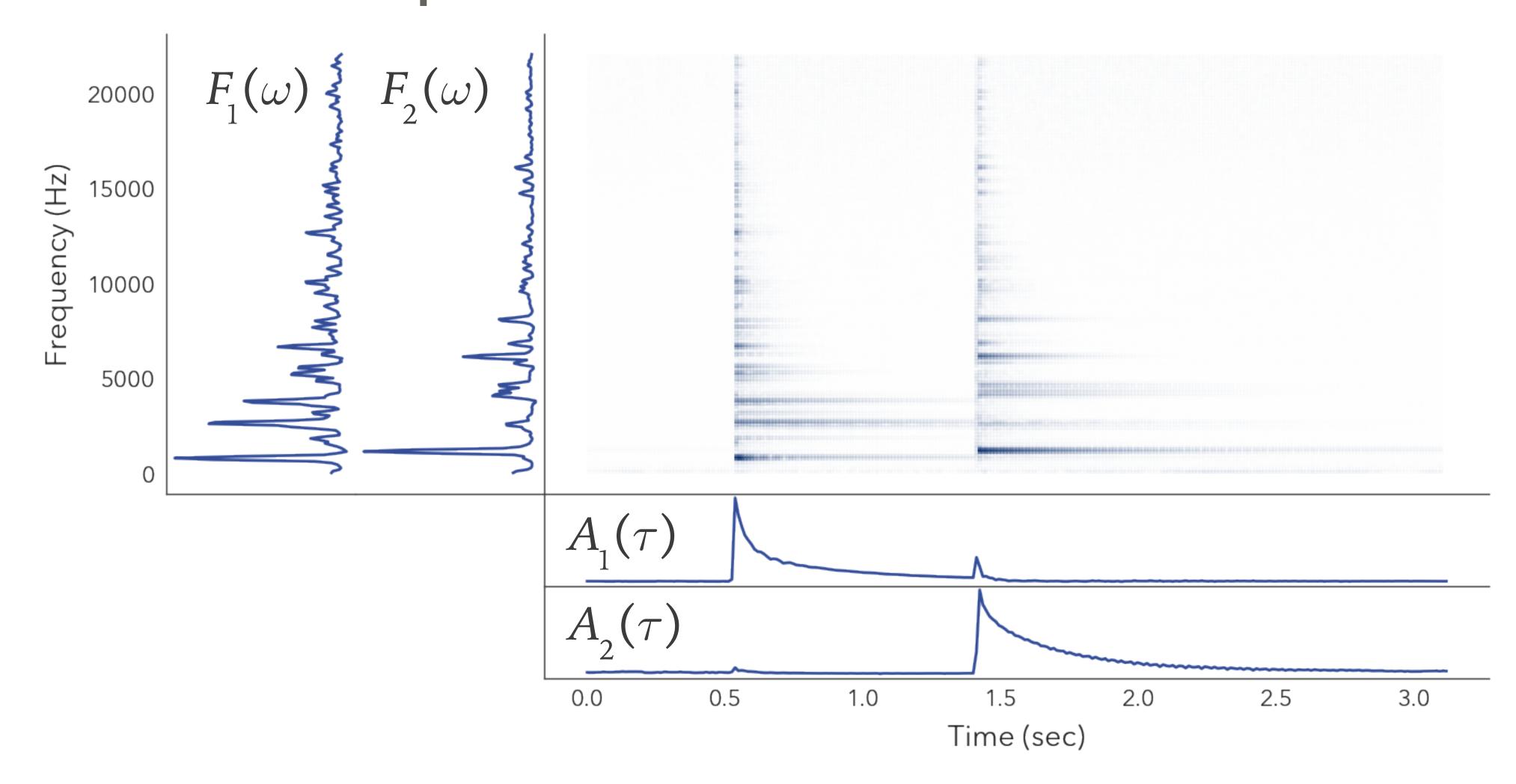
$$F \approx W \cdot H$$

$$\mathbf{F} \in \mathbb{R}_{+}^{M \times N}, \mathbf{W} \in \mathbb{R}_{+}^{M \times K}, \mathbf{H} \in \mathbb{R}_{+}^{K \times N}$$

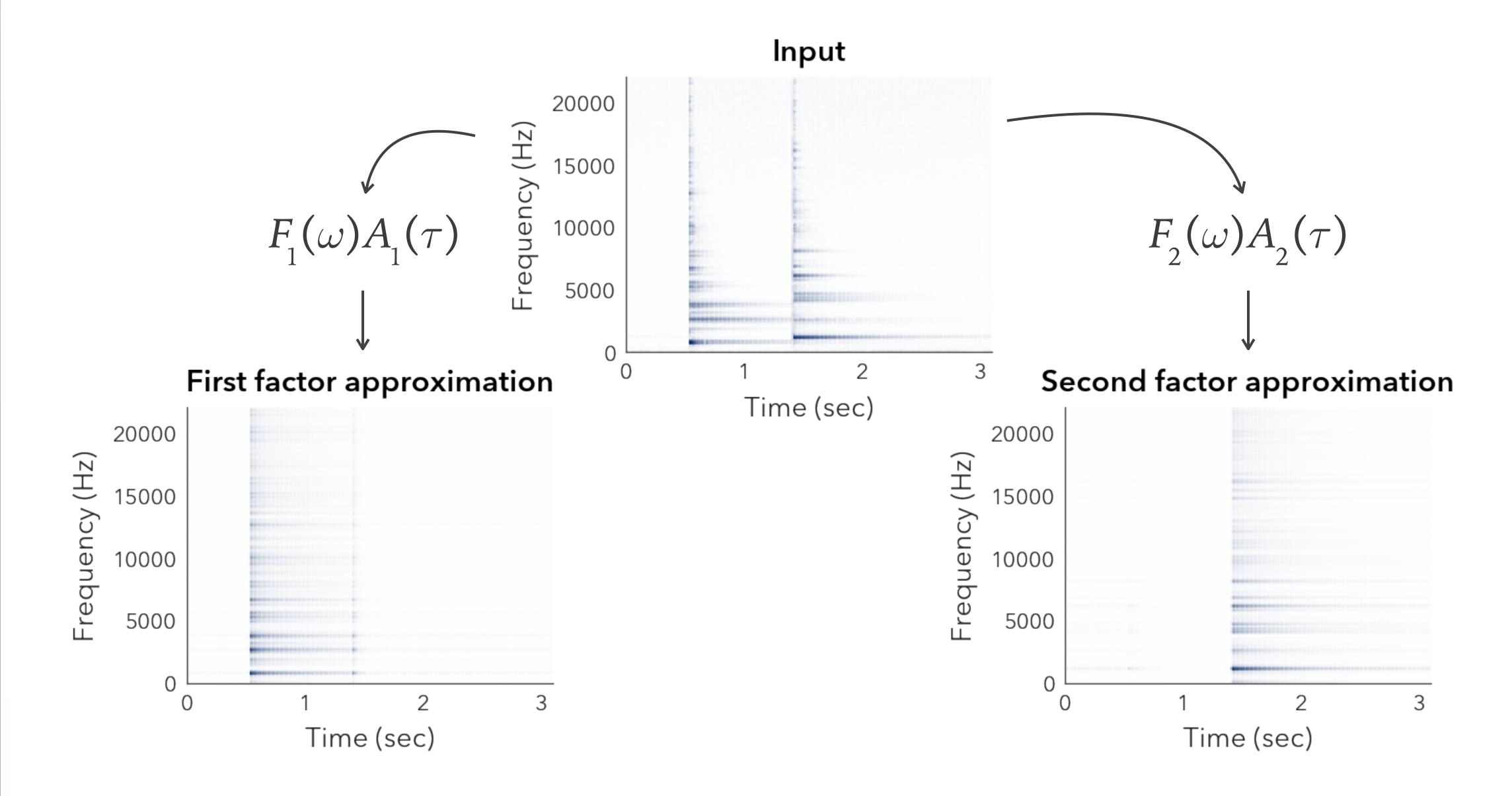


What does this do?

More useful representation!



Factors learn sources



Going back to time

Original input had amplitude and phase

$$S(\omega, \tau) = \left| \text{STFT}(x(t)) \right|$$

 $\Phi(\omega, \tau) = \angle \text{STFT}(x(t))$

• To get each source y_i in the time domain we assume:

$$\begin{vmatrix} \text{STFT}(y_i(t)) \\ = F_i(\omega)A_i(\tau) \end{vmatrix}$$

$$\angle \text{STFT}(y_i(t)) = \Phi(\omega, \tau)$$

And we can now extract the two bells:

Source 1

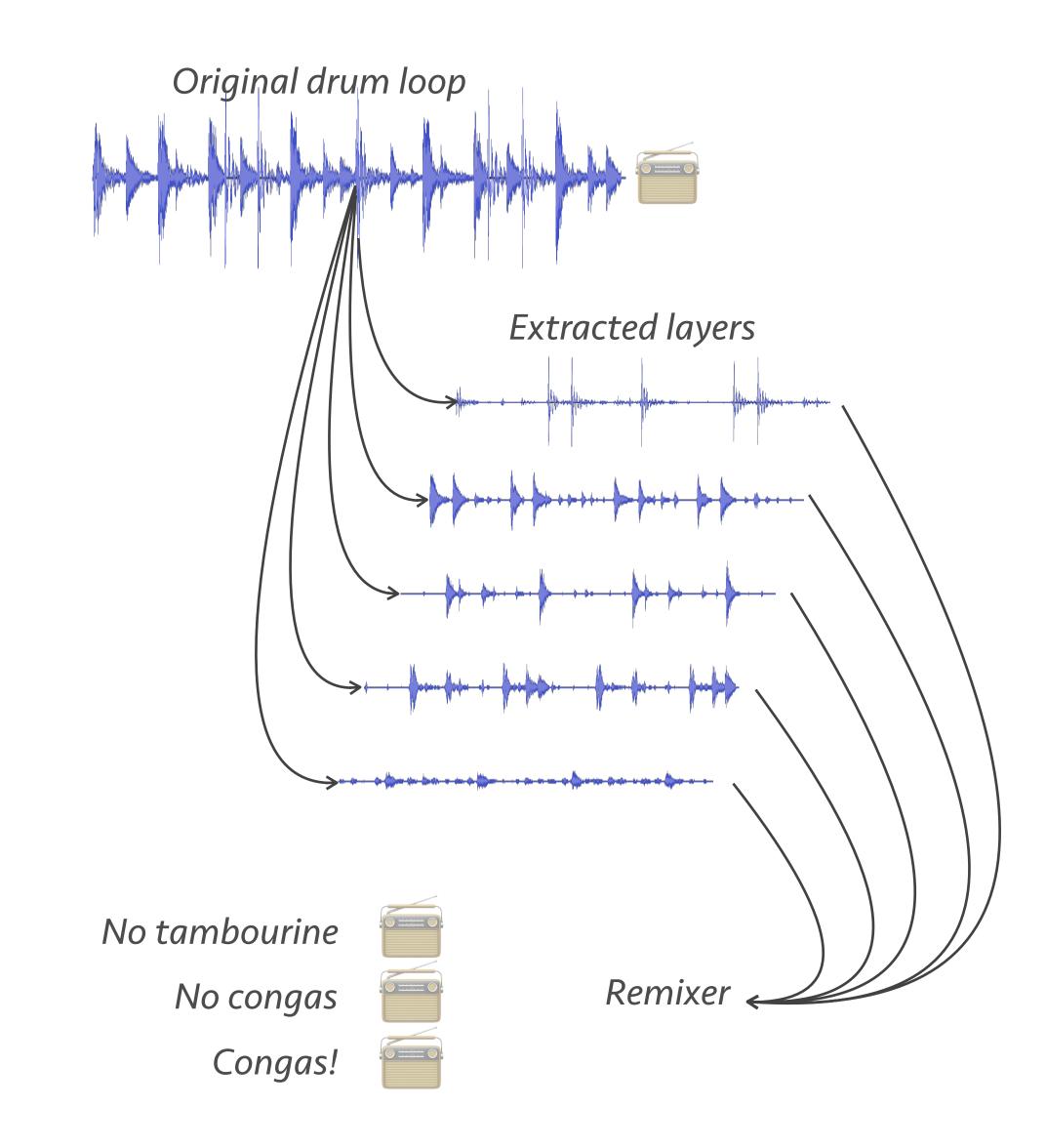
Source 2

Audio remixing

 We can use this idea to remix different sounds in a recording

- Factorize the input
 - Learns salient sounds in it

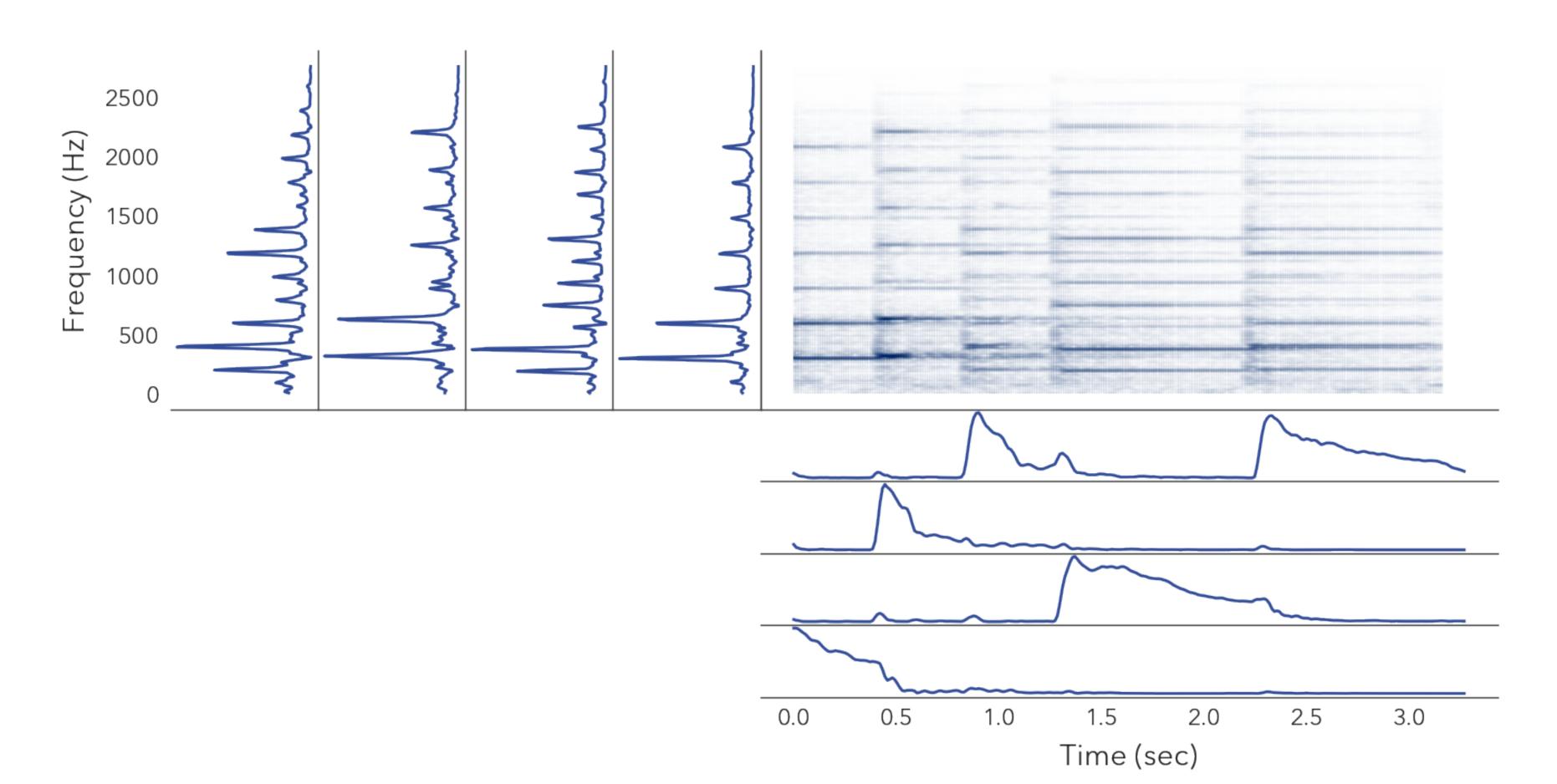
- Remix factors as desired
 - E.g. remove a sound, or make it louder/softer



Trying this on music

- Analyzing a piano clip
 - What are the learned factors?

5 notes, 4 of them unique



Polyphonic music transcription

Assuming simple note spectra

- We can decompose music into notes
 - Each factor $F_i(\omega)$ is a note spectrum

Problems

- How many notes do we need to extract?
- Notes need to be represented by a single spectrum

Example

Bach Fugue XVII in Gm

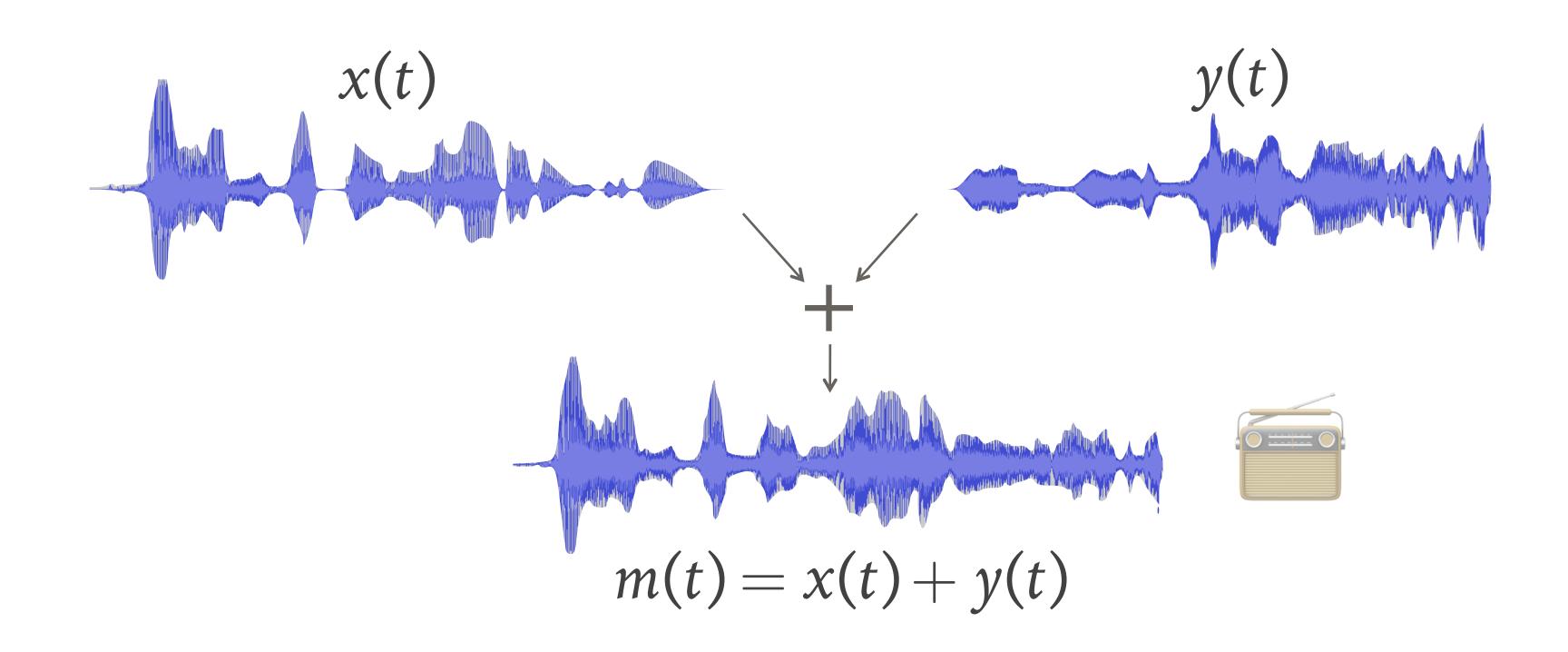


But ...

- We can only extract/detect simple sounds
 - Why is that?

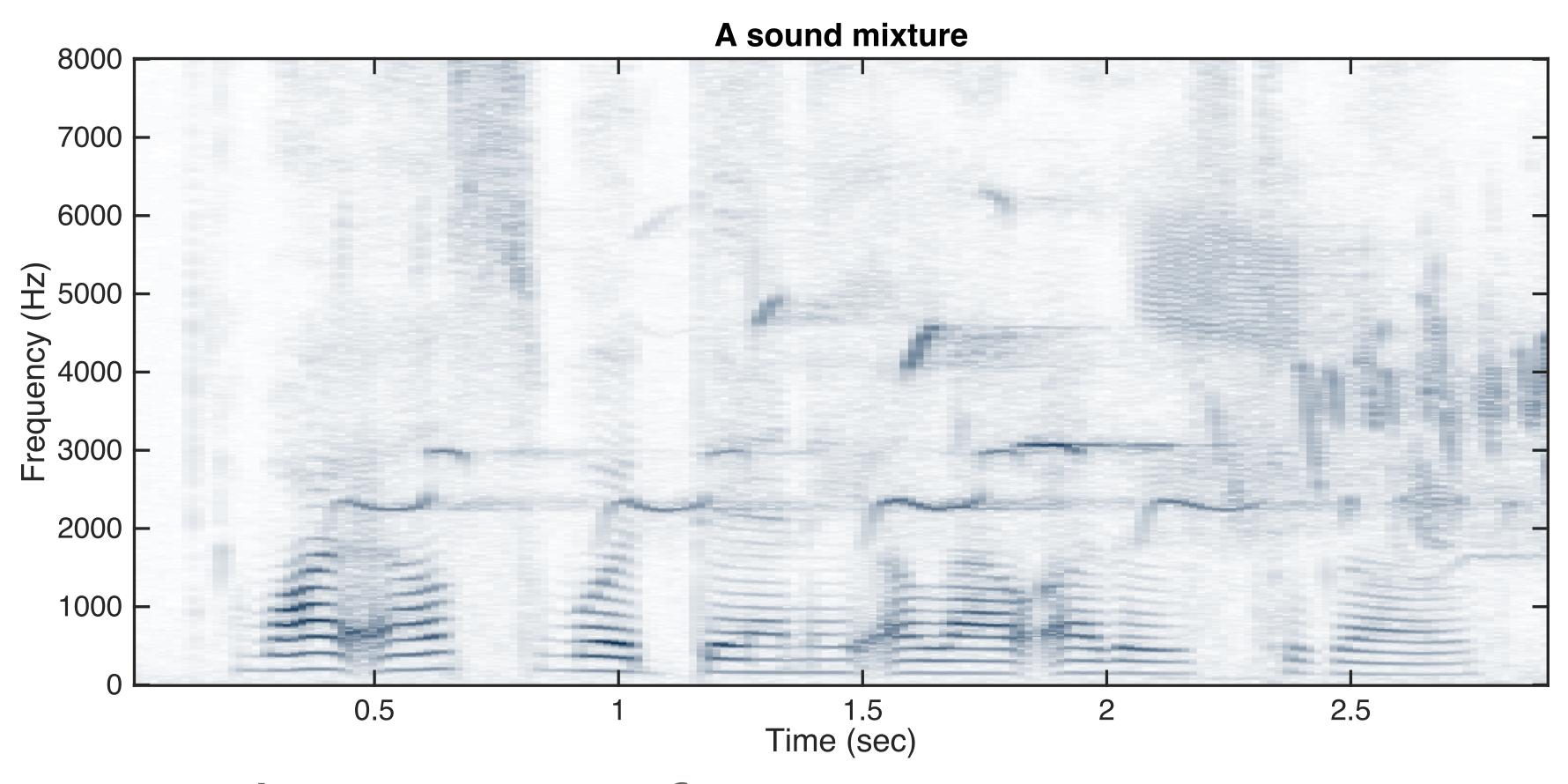
How about real-world source separation?

Defining the problem



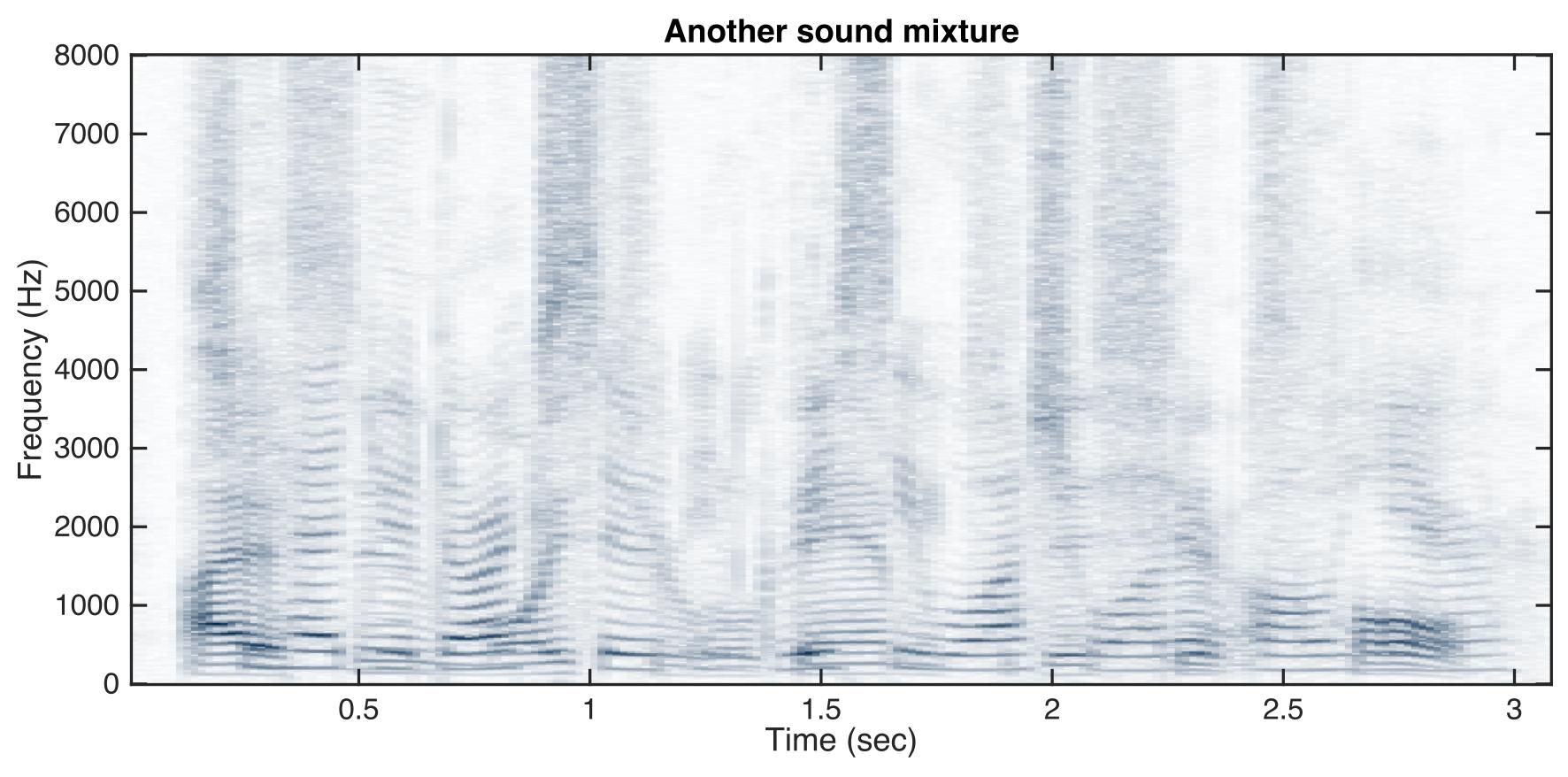
- Very ill-defined problem!
 - Single-channel source separation

The name of the game



- Finding signal priors to perform separation
 - School a: Perceptual-minded approaches
 - School b: Statistical approaches

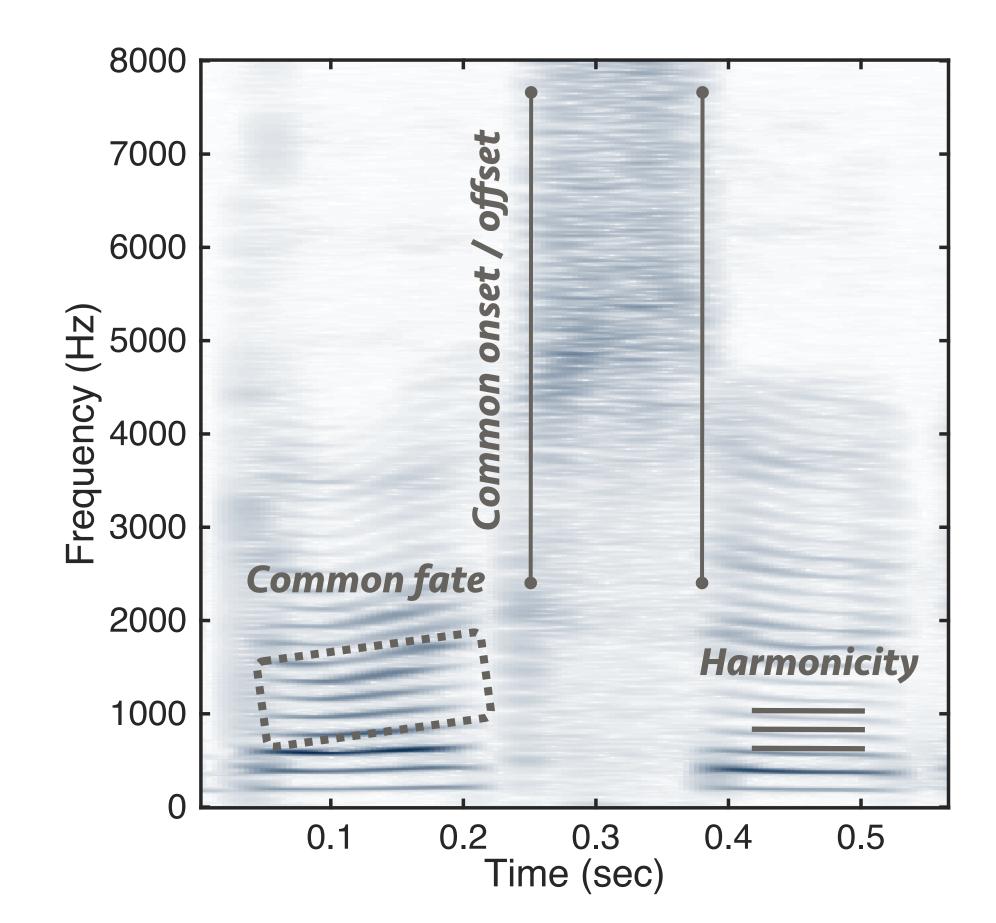
The name of the game



- Finding signal priors to perform separation
 - School a: Perceptual-minded approaches
 - School b: Statistical approaches

Perceptual approaches

- Computational Auditory Scene Analysis
 - Driven by psychoacoustic experiments



Some (general) statistical approaches

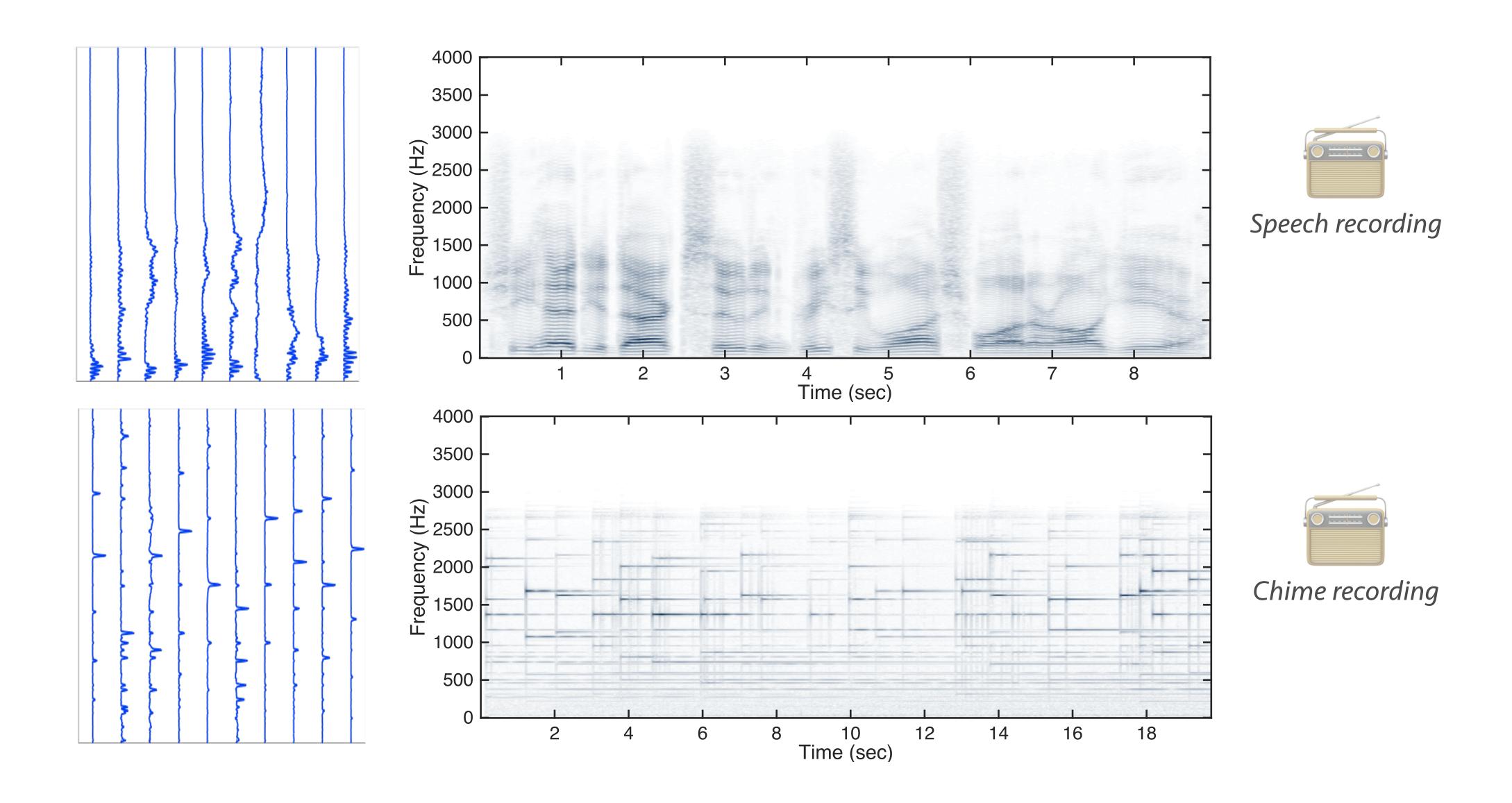
- Approaches with general source assumptions
 - Lee and Jang
 - ICA dictionaries of time waveforms
 - Reyes, Jojic and Ellis
 - Graphical model on TF distributions
 - Lagrange, et al.
 - Normalized cuts
 - Bach and Jordan
 - Spectral clustering for perceptual grouping
- Things aren't great ...

Giving up on unsupervised methods

- It is hard to define a source structure
 - We should learn it instead

- Supervised source separation
 - Use training data as a hint towards what you want

Learning factor dictionaries

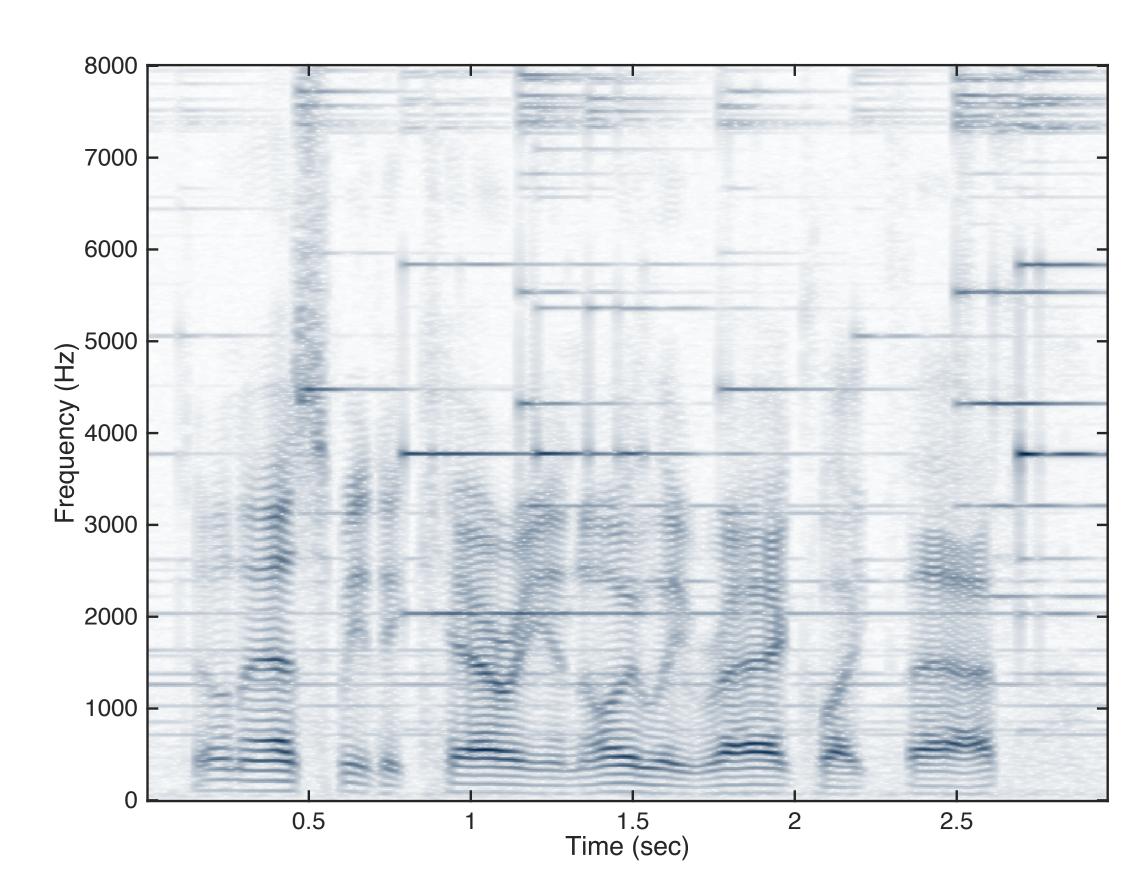


Mixtures of sounds

- Use spectrogram additivity
 - combine models to explain mixture

$$\mathbf{F} = \left[egin{array}{c} \mathbf{W}_{chimes} & \mathbf{W}_{speech} \ \mathbf{H}_{speech} \ \mathbf{K}_{nown/fixed} \end{array}
ight] \cdot \left[egin{array}{c} \mathbf{H}_{chimes} \ \mathbf{H}_{speech} \ \mathbf{E}_{stimated} \ \mathbf{E}_{stimated} \ \mathbf{H}_{speech} \ \mathbf{H}_{speech}$$

- We estimate only H
- The known frequency factors claim only the parts that they can fit best



Huh?



 $[\mathbf{H}_{c},\mathbf{H}_{s}]$

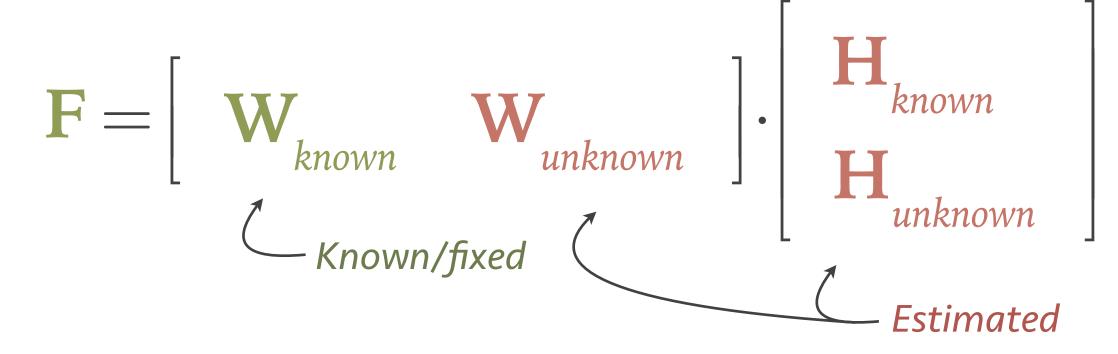
Extracted

Mixture

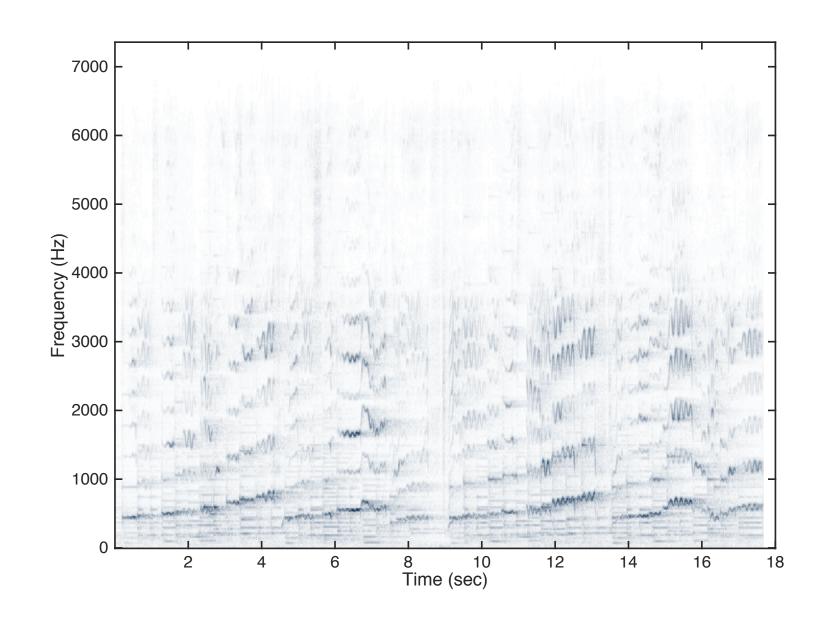
Extracted

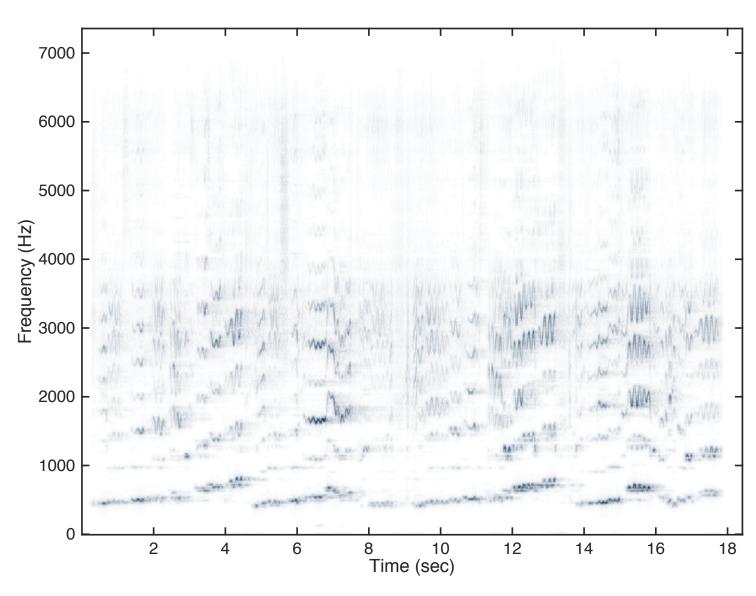
What if we do not have all the models?

• Same as before, only one model:

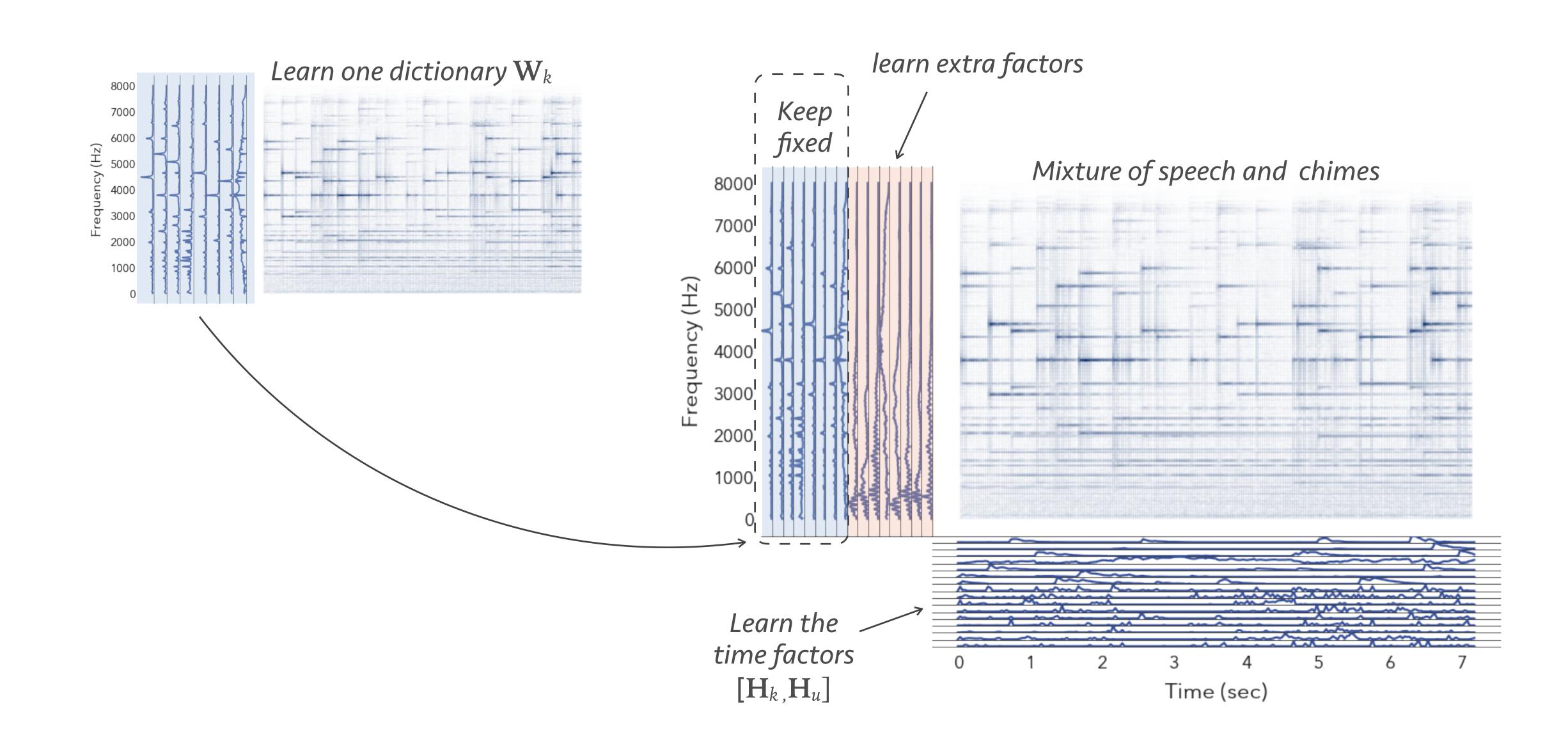


- Learn weights and unknown bases
 - Extra learned factors converge to unmodeled sounds in the mixture





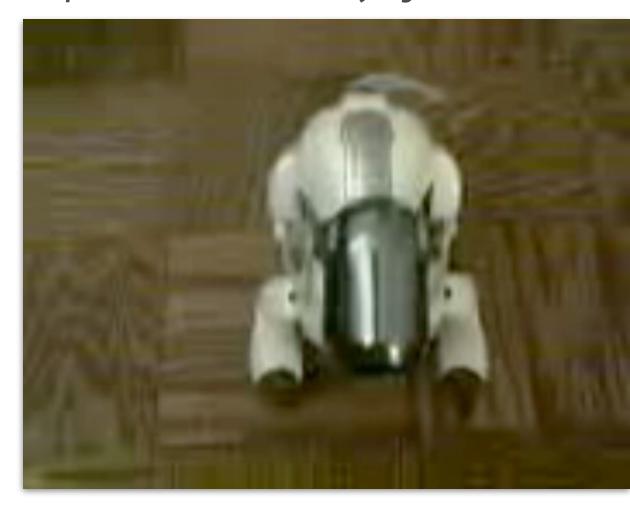
Huh again?



Using in denoising

- Two cases
 - Have noise model, extract target
 - Have target model, extract noise
- More flexible than traditional spectral subtraction
 - It can model changing sound spectra
 - Remember the wind denoising example?
- Applies to many problems
 - Denoising, separation, karaoke, ...

Speech + the beauty of mechanics



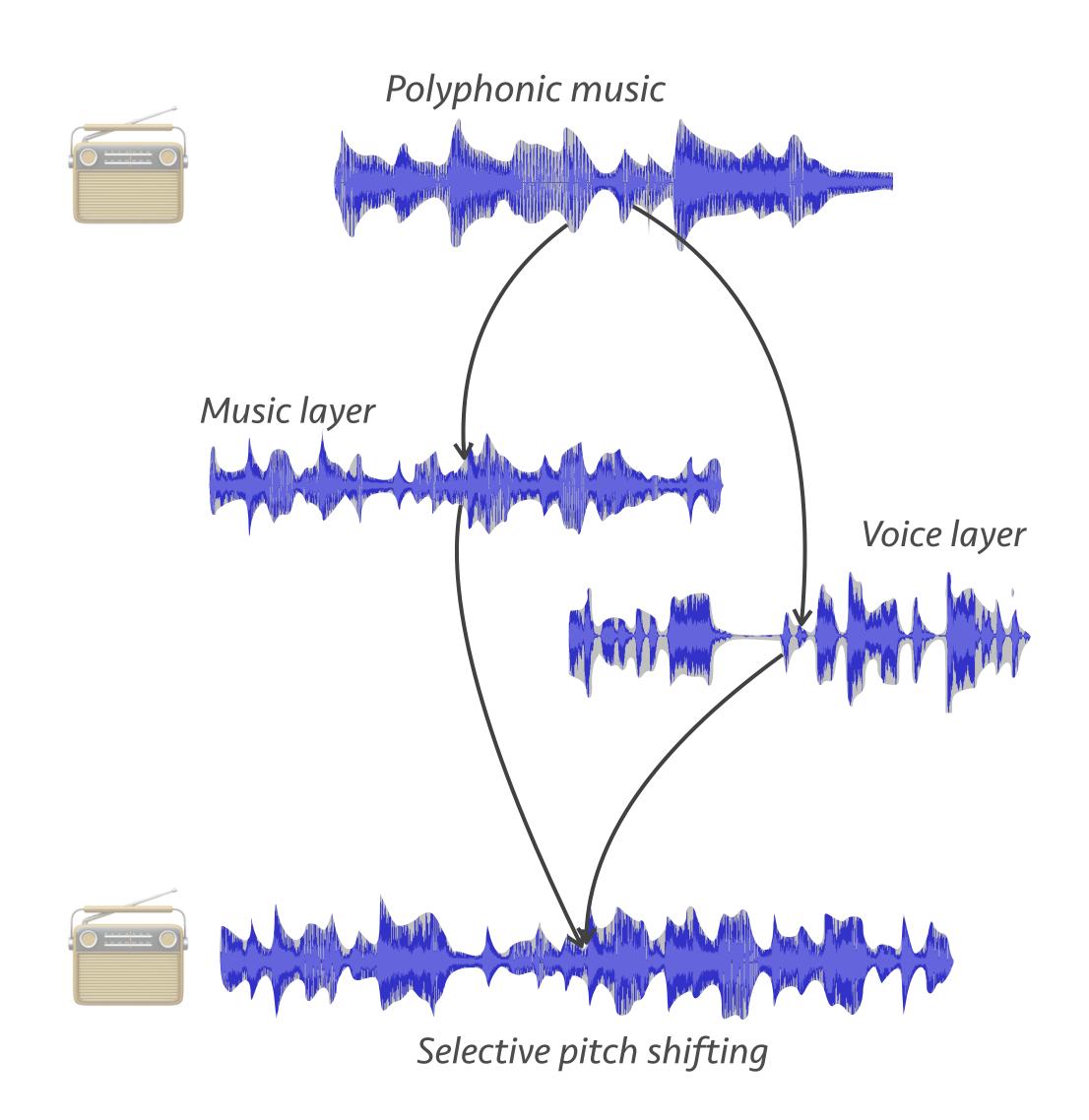
Wideband noise

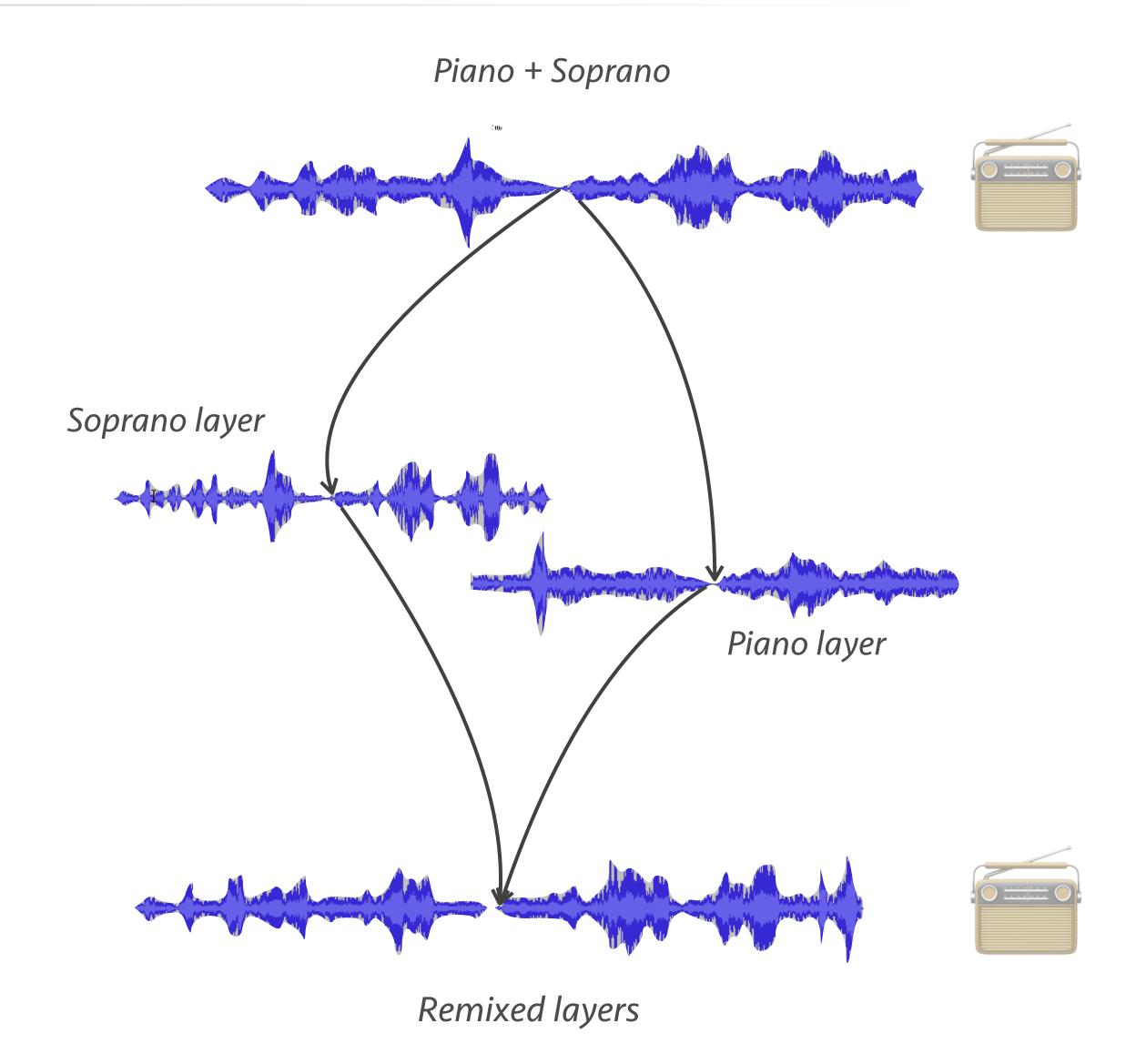
Extracted speech

Loosely correlated "noise"

Denoised sound

Audio layer editing



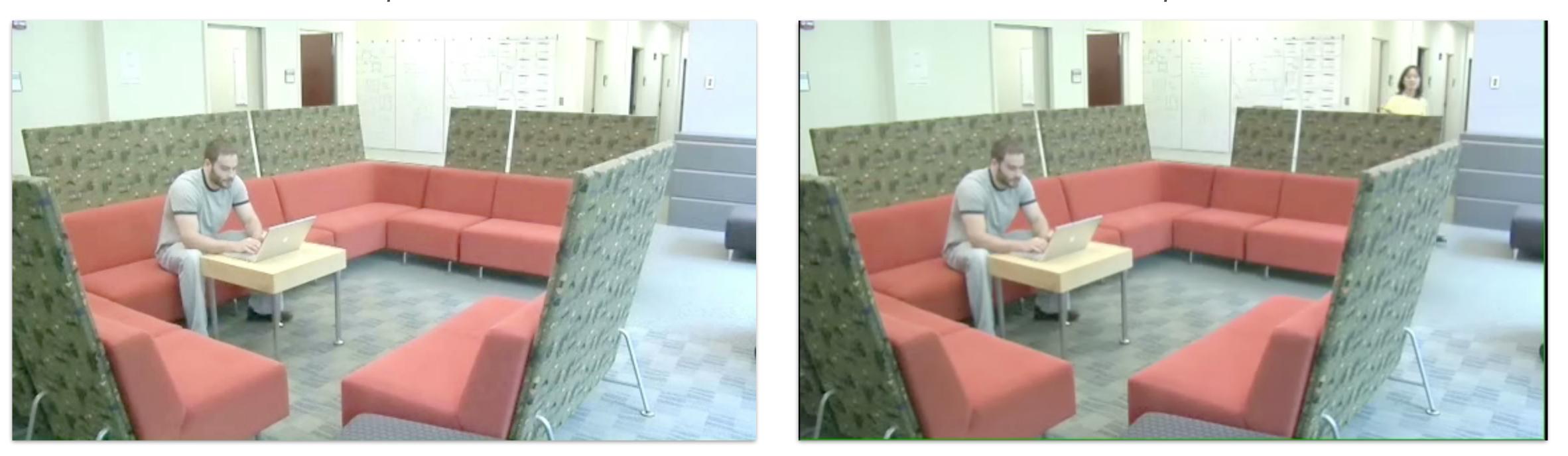


Going A/V

We can also extract sources audio/visually

Output

Input



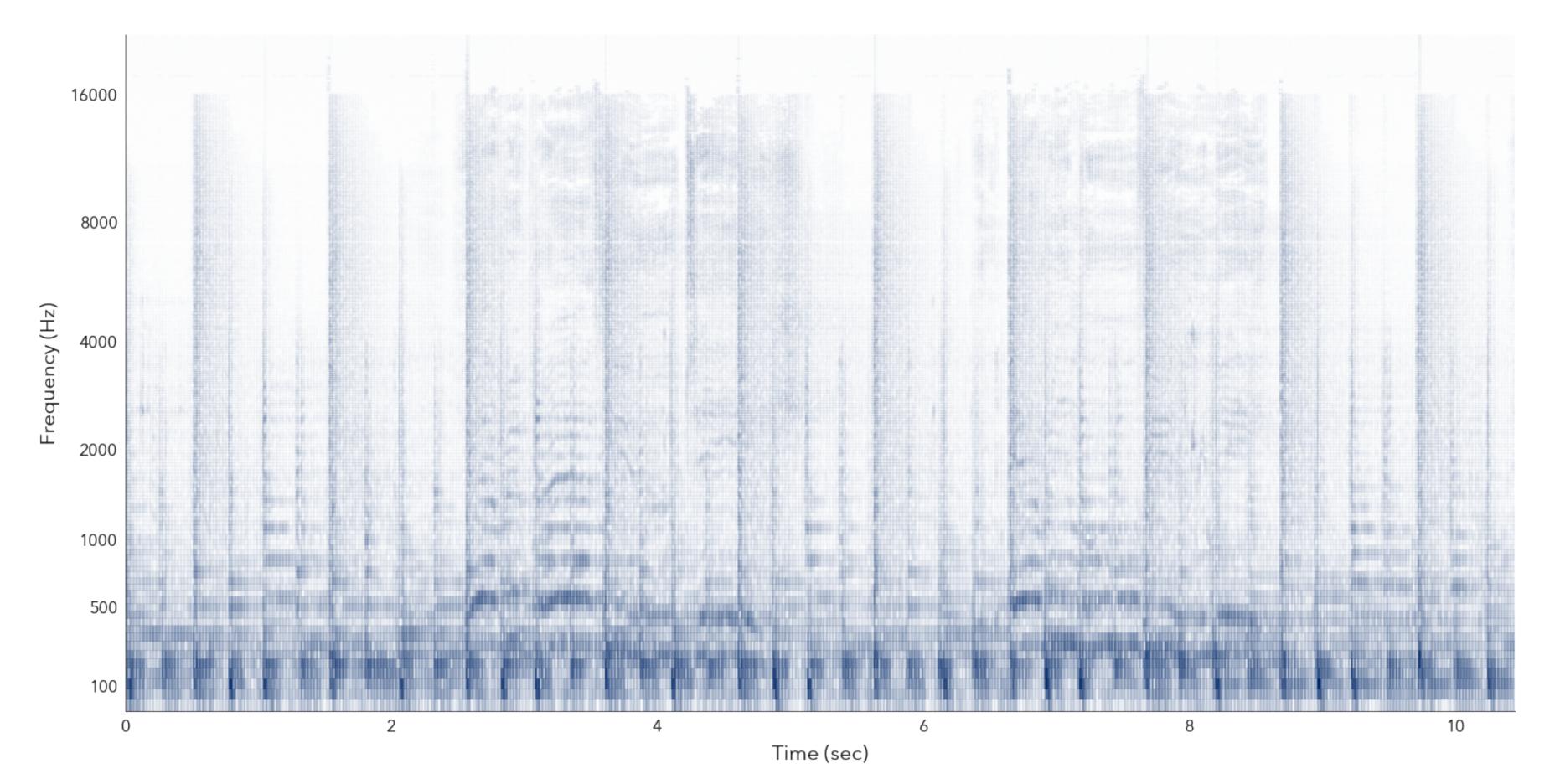
What about really difficult cases?

- How do we select a specific source?
 - One for which we do not have a dictionary?

- We can provide hints from a user input
 - E.g. have the user vocalize the target
 - Give both temporal and spectral hints

Some motivation

- Can we remove the main source?
 - What is the main source? How do we select it?

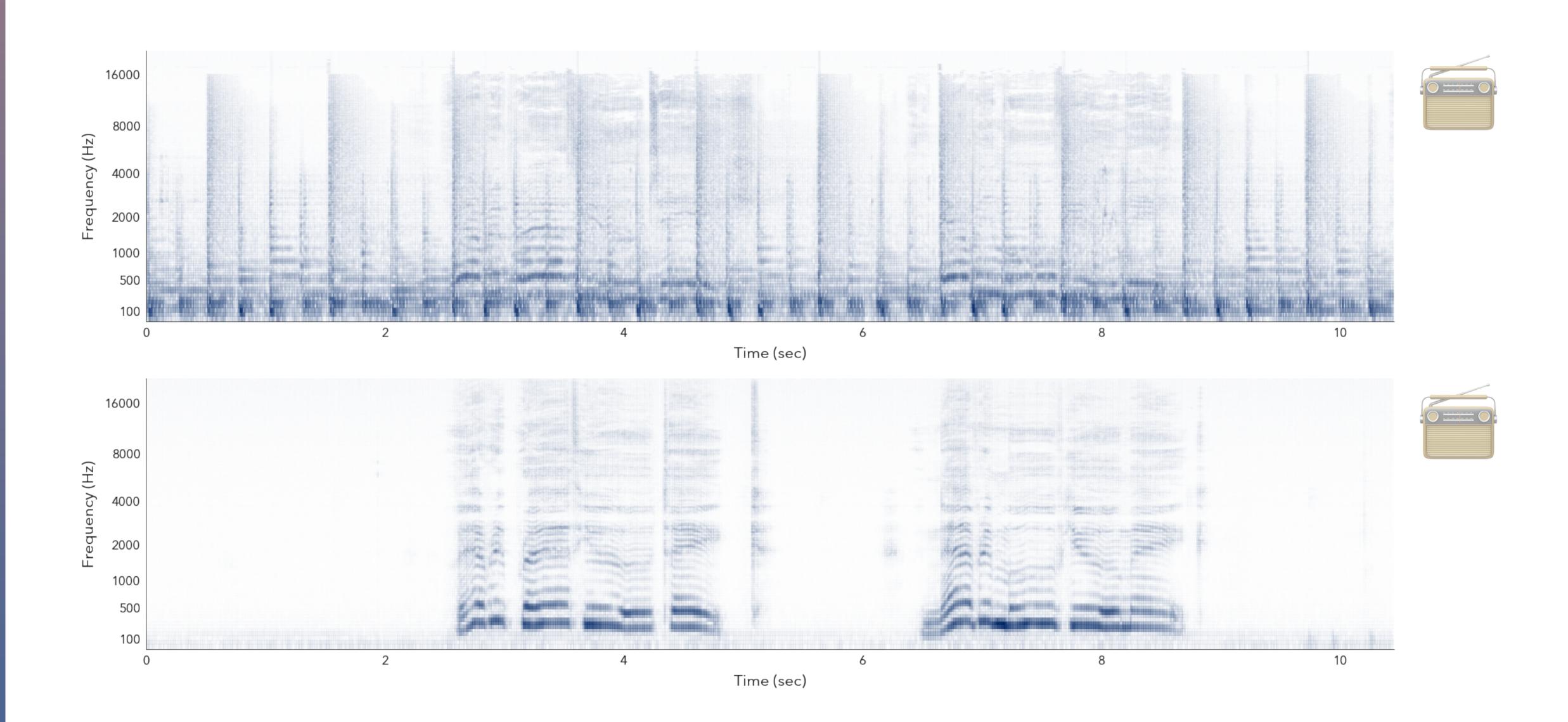


Basic idea

- Vocalize the target sound
 - Provides spectral/time factors similar to the ones in the target

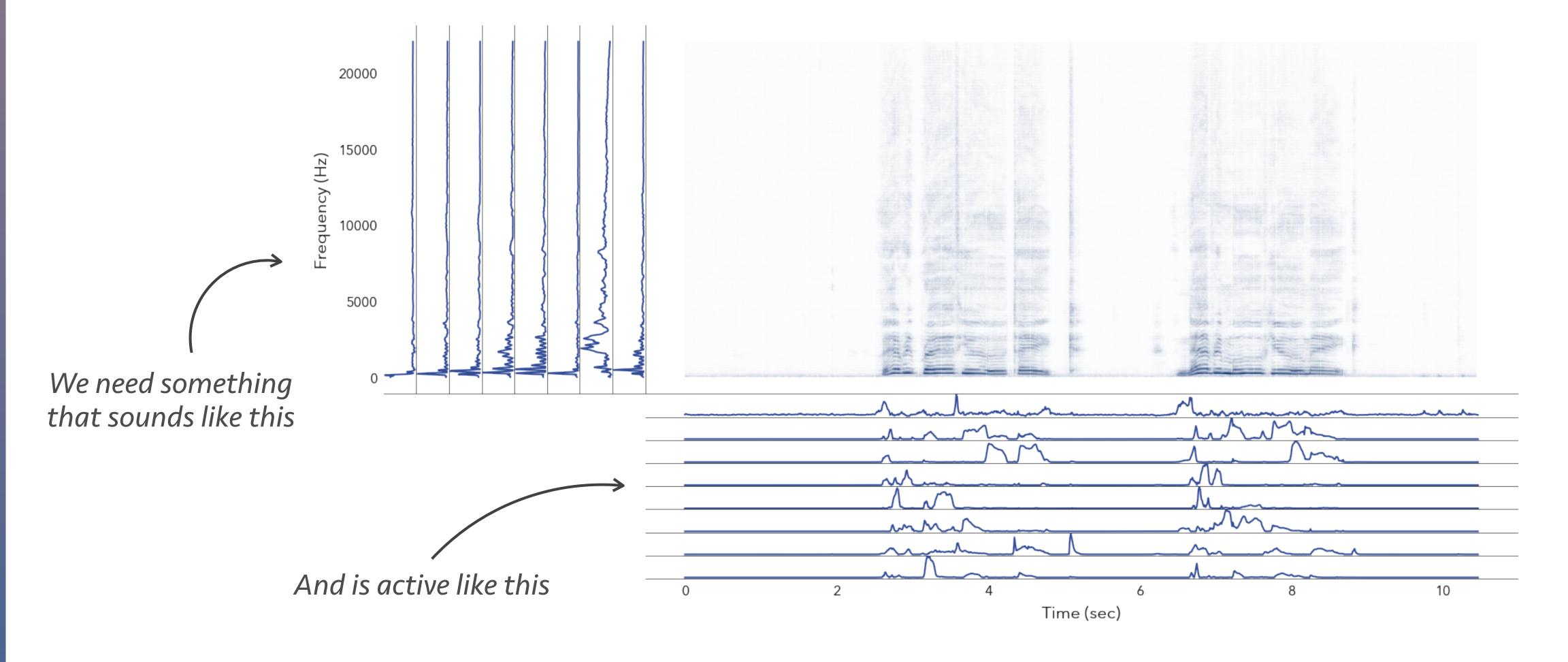
- Perform unsupervised separation
 - Start with the user-provided factors as starting point
 - These will quickly explain what is closest to them
 - Extra factors will model the rest

Pointing to a source in the mix



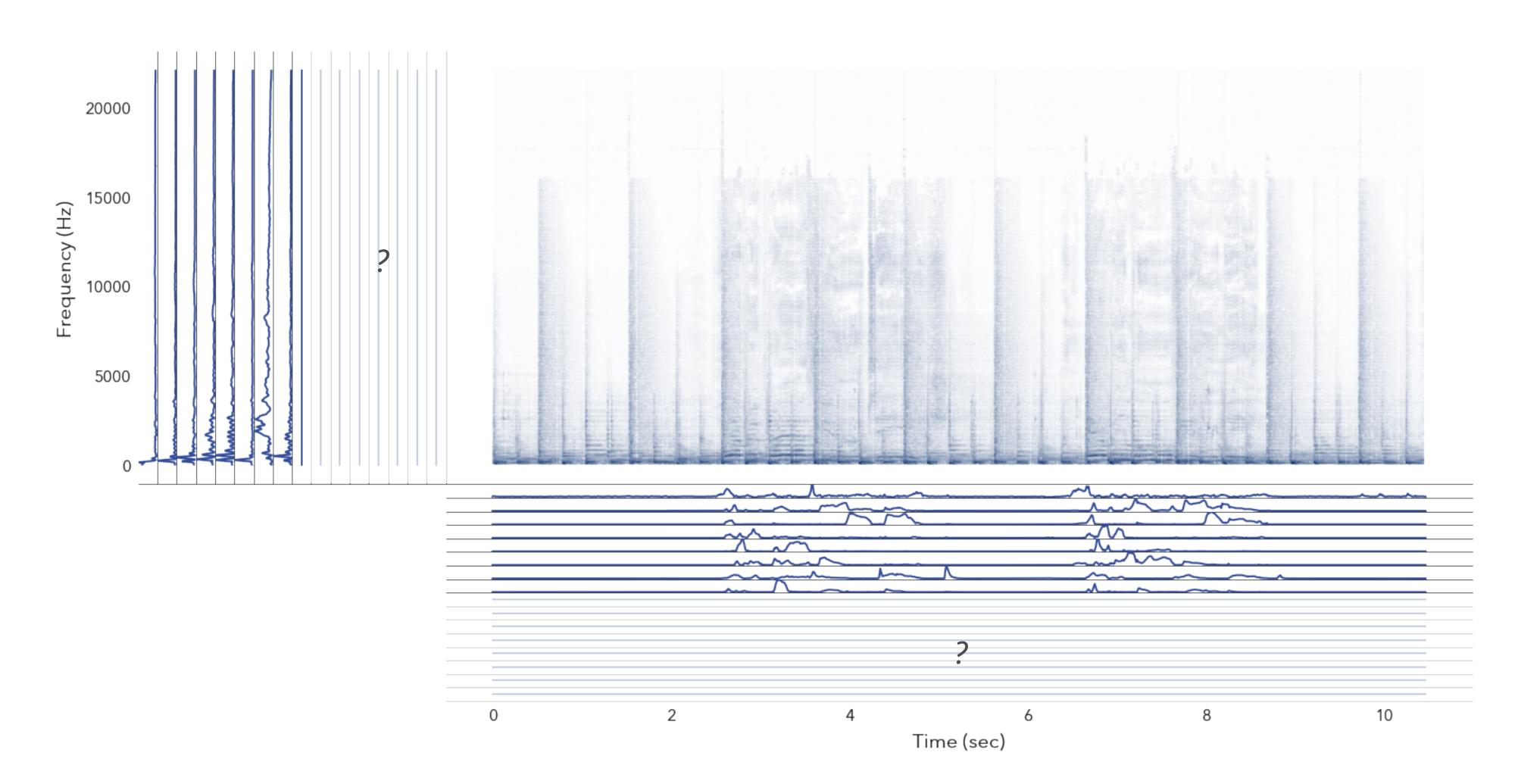
Learning something useful

Get spectrum and timing info for target source



Use learned model for separation

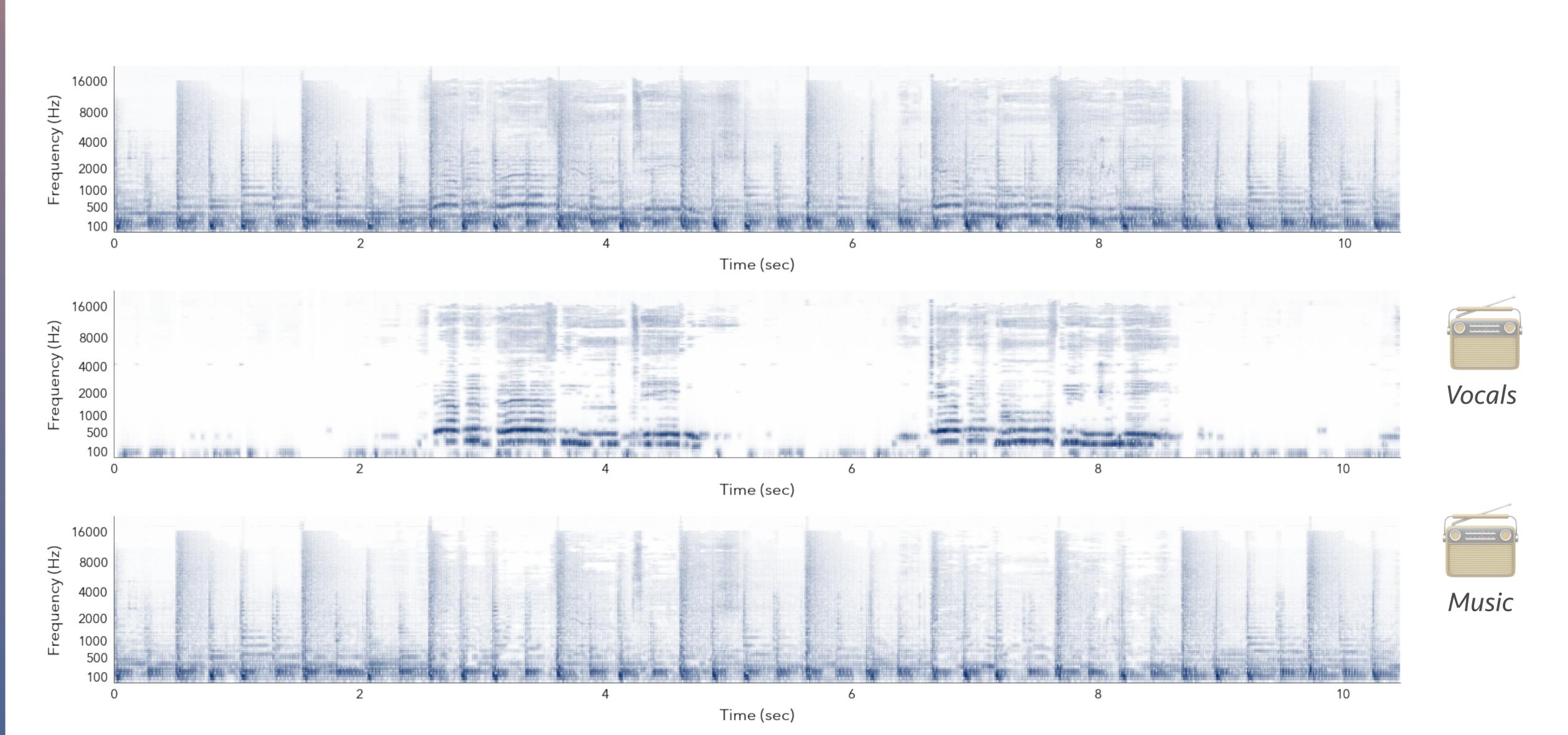
Add extra factors to explain the rest of the sounds



Same model as before

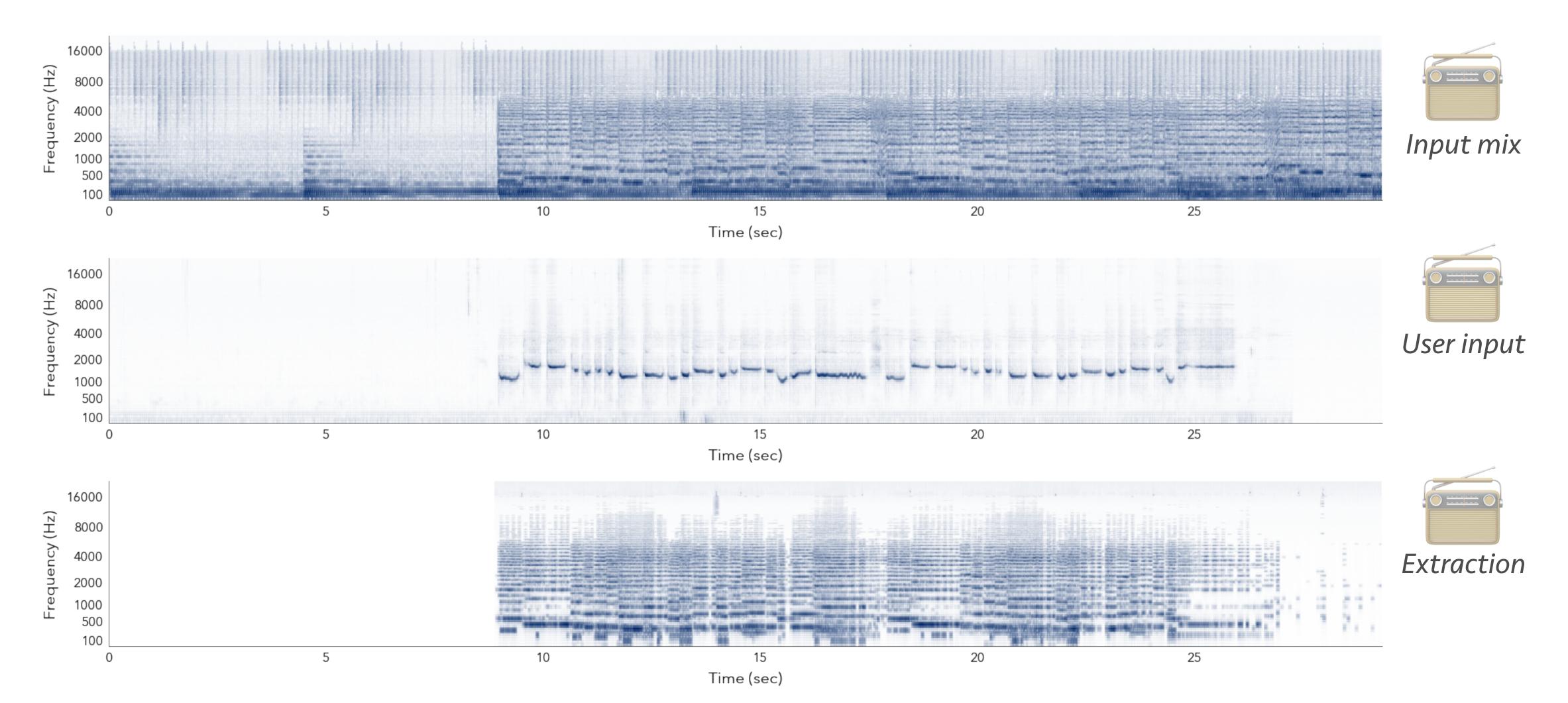
- Known factors will describe the target best
 - Similar spectra and activations
 - We can additionally fine-tune them to fit the input best
 - Using that factor subset we approximate the target
- Extra factors will explain everything else
 - Which we can use to resynthesize the rest of the mix

Extracted sources



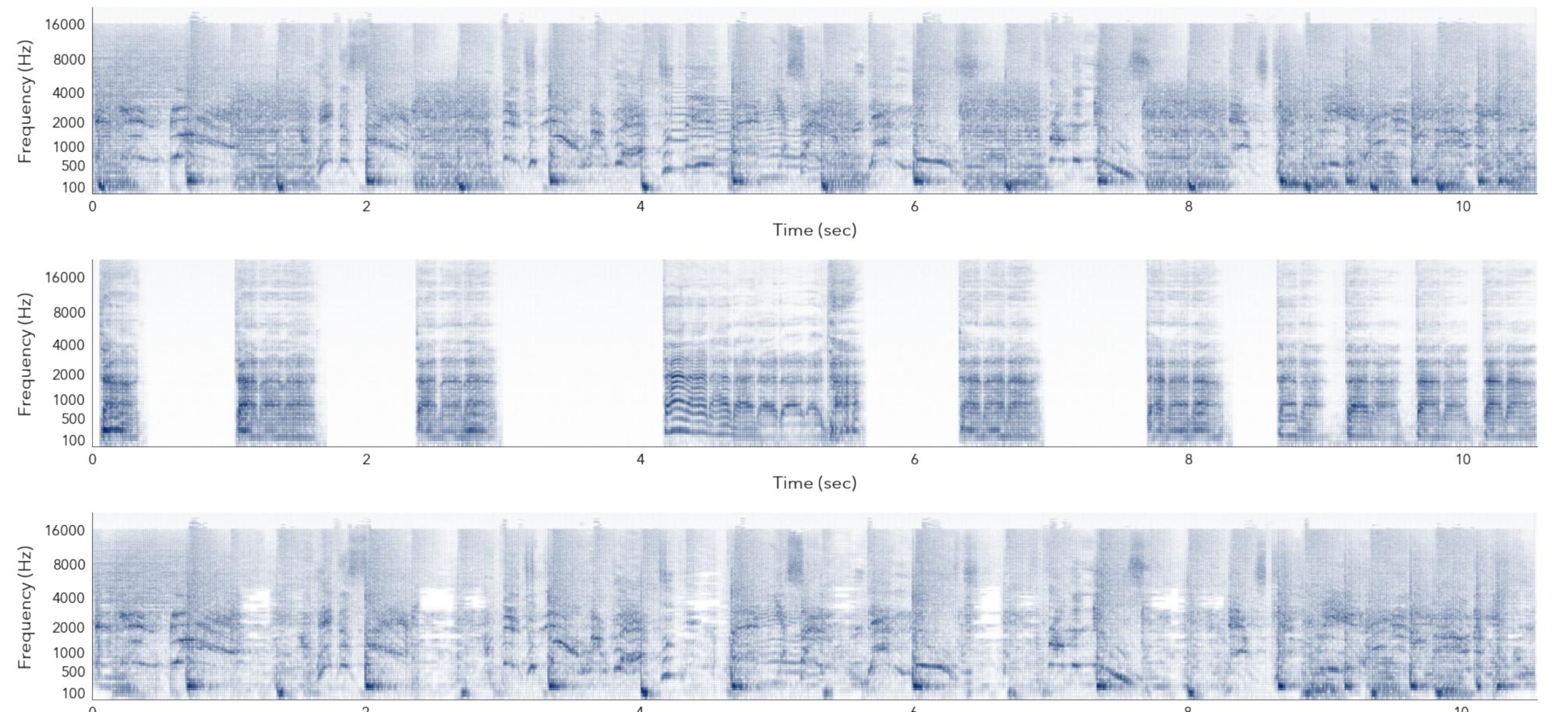
Non-matching spectra

No need to be too exact



Pushing it a bit ...

Very rough approximation to input

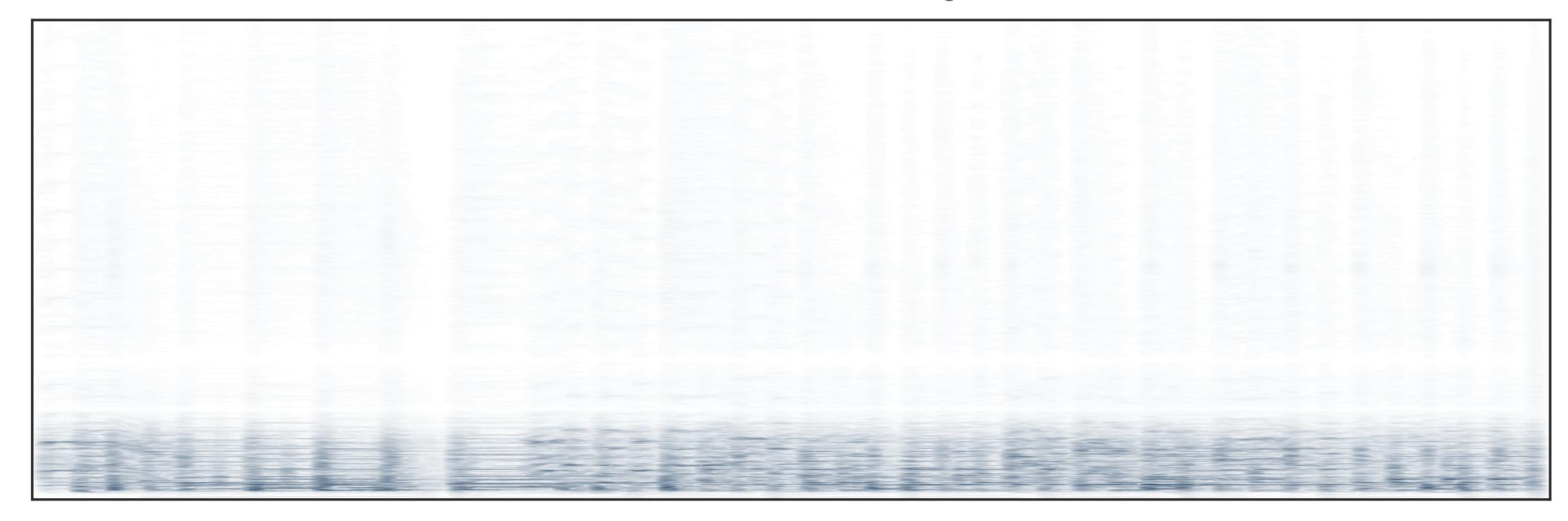


Time (sec)

Audio superresolution

- Suppose that we are missing some frequencies
 - Can we ever recover them?

A bandlimited recording

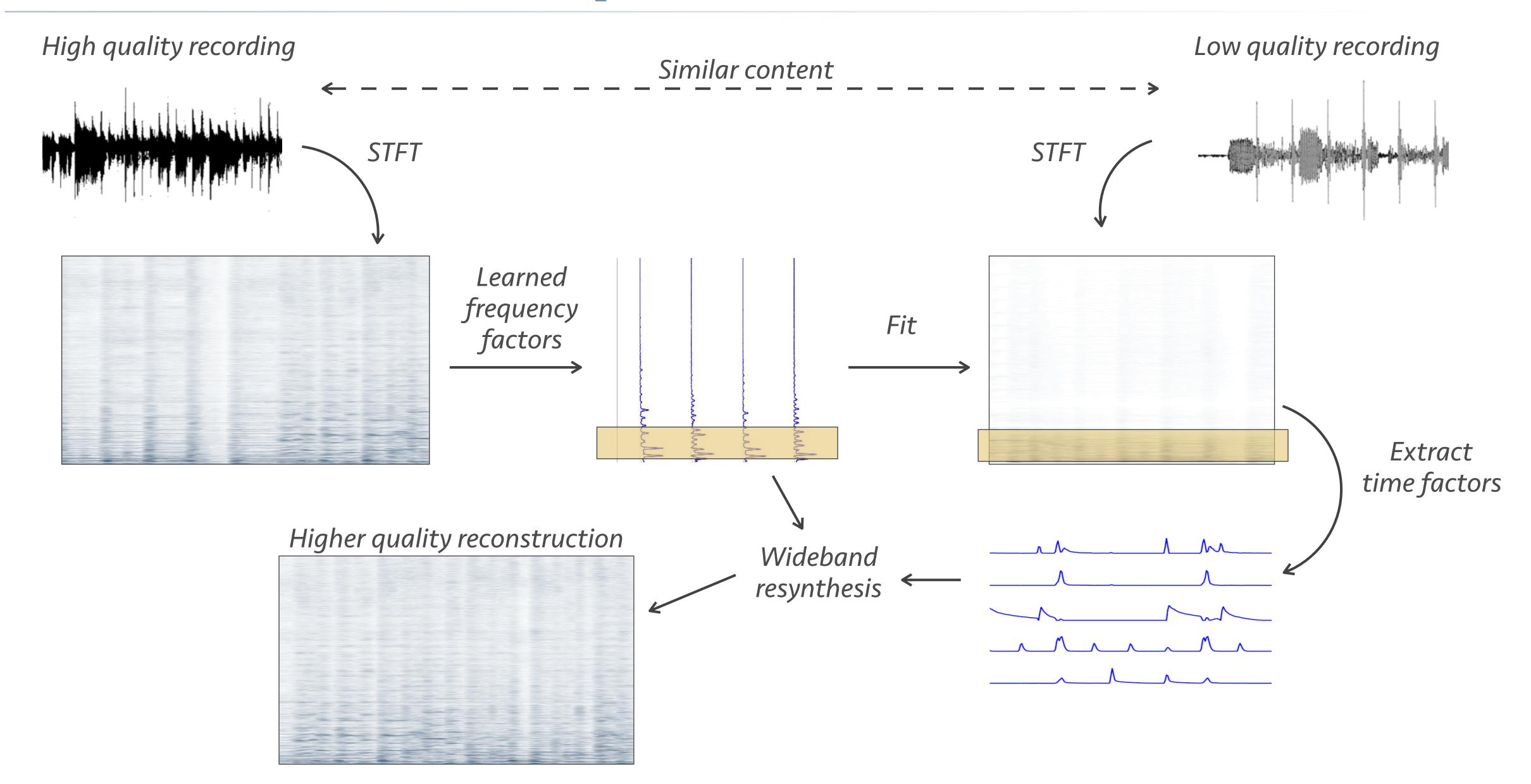


Recovery by example

- We need a way to "make up" the missing data
 - We can use hints from other recordings

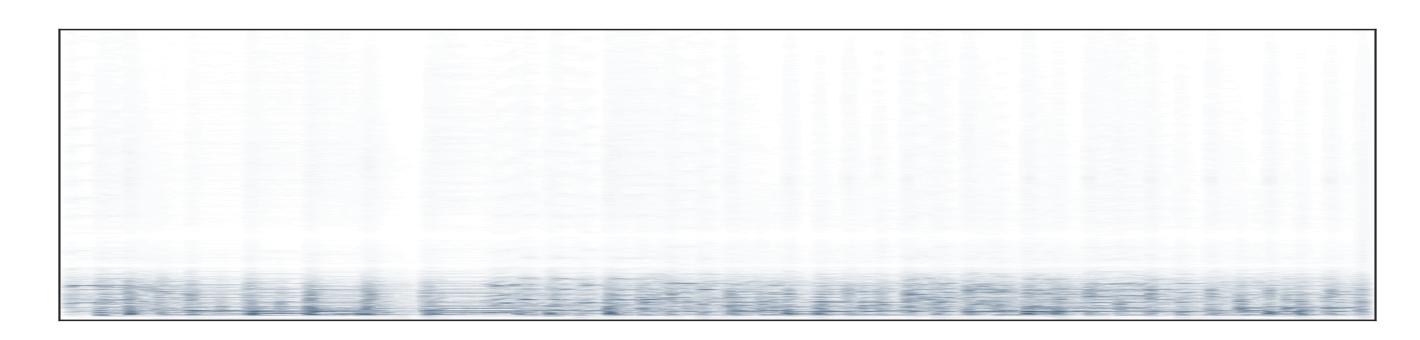
- Extract model of a sound that serves as example
 - Use that model to reconstruct low-quality recording

Overview of the process

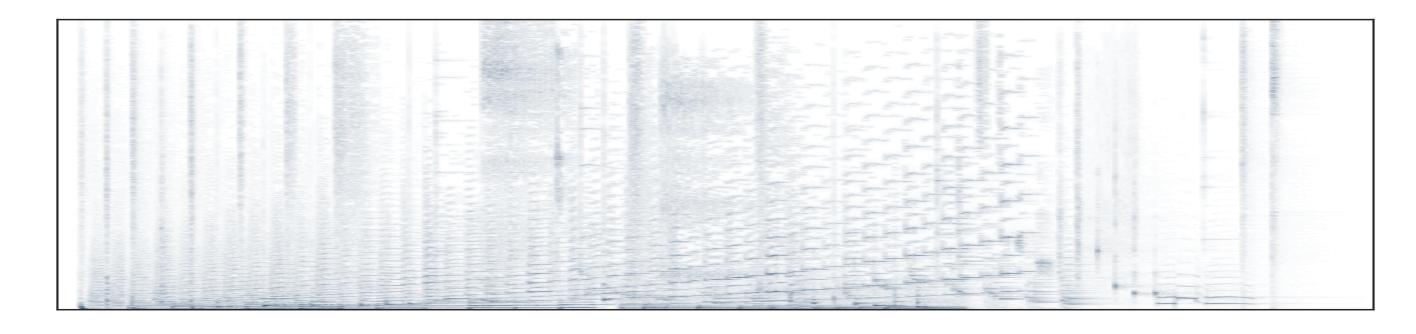


Expansion example

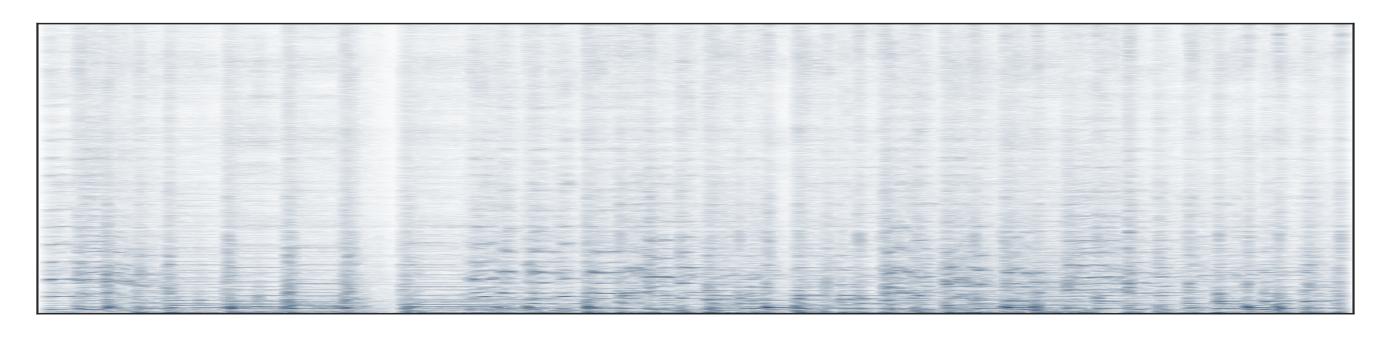
Low quality recording (400Hz-1600Hz)



High quality example

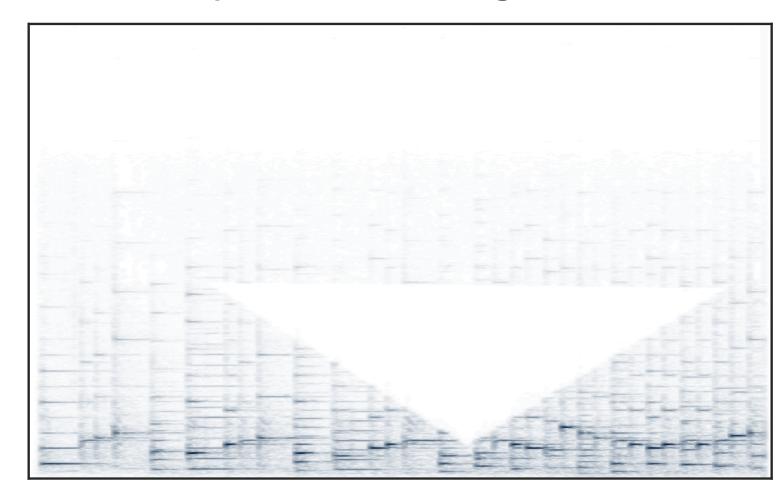


Expanded reconstruction

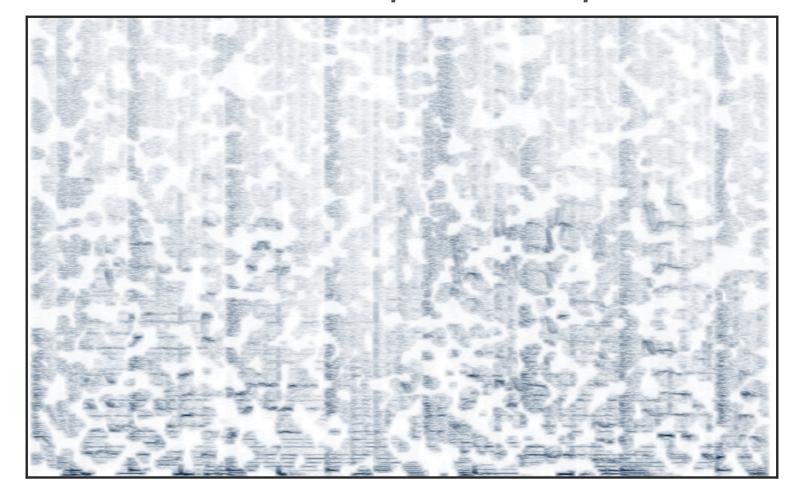


Also works for missing data

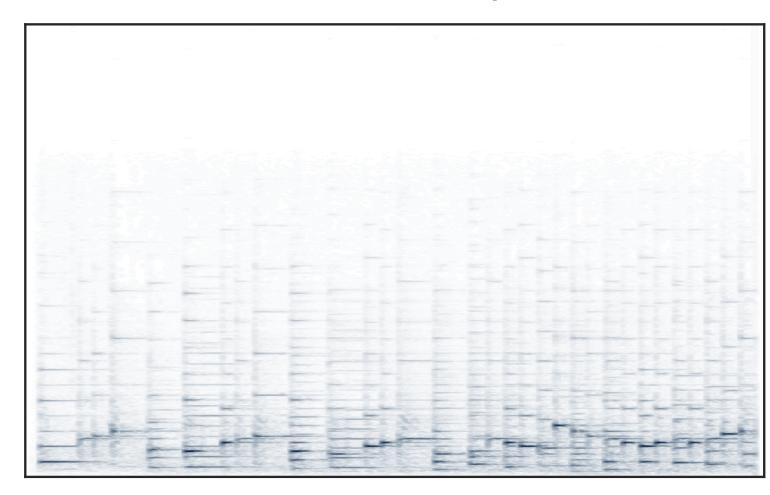
Input with missing data



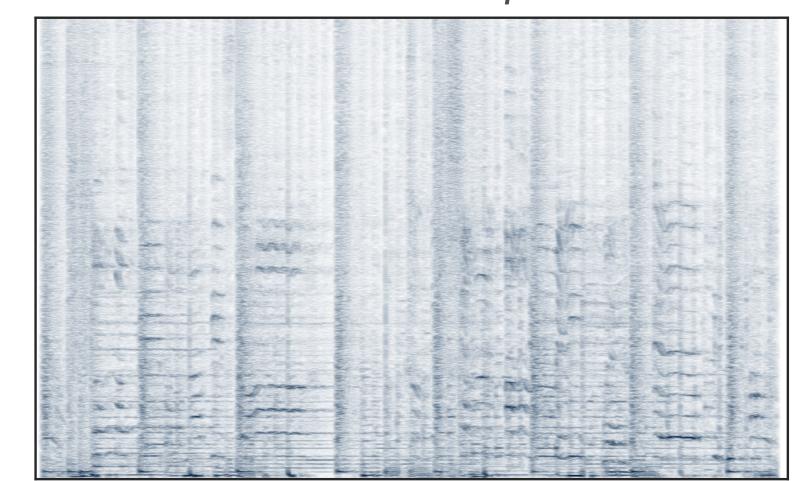
Extreme compression input



Recovered output



Recovered output



Many more applications

- Mixtures are very common in the real-world
 - Medical measurements, mechanical readings, ...

- I only talked about audio here
 - Lots of work to do in the field of mixtures
 - Lots of cool things coming out recently

Recap

- Source separation
 - Different approaches
- Spectral factorizations
 - Non-negative models
- Example-driven processing
 - Source selection, reconstruction, missing data, ...

Reading material

- Spectral factorizations:
 - http://paris.cs.illinois.edu/pubs/T-SA-00816-2005.pdf

- Bandwidth expansion:
 - http://paris.cs.illinois.edu/pubs/smaragdis-waspaa07.pdf

- User-guided separation:
 - http://paris.cs.illinois.edu/pubs/smaragdis-waspaa09.pdf

This week's lab

- Lab on spectral factorizations
 - Basic supervised source separation

Also the last lab for this course!

Last bit of administrivia

- No classes next week
 - I will be out of town April 16-22